Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 142443 by Hassen_Timol last updated on 31/May/21

      F(x) = ∫_( x) ^(  x^2 ) (1/( ln(t) )) dt    Show that :                ∣ F(x) ∣  ≤  ((∣ x^2  − x ∣)/(∣ ln(x) ∣))    Please

F(x)=xx21ln(t)dtShowthat:F(x)x2xln(x)Please

Answered by Boucatchou last updated on 31/May/21

∀ x≤t≤x^2  ,x>0,   (1/(lnt))≤(1/(lnx))     ⇒    ∣F(x)∣≤∫_x ^( x^2 ) (1/(∣lnt∣))dt≤(1/(∣lnx∣))∫_x ^( x^2 ) dt                                                   ⇒   ∣F(x)≤((x^2 −x^x )/(∣lnx∣))≤((∣x^2 −x∣)/(∣lnx∣))

xtx2,x>0,1lnt1lnxF(x)∣⩽xx21lntdt1lnxxx2dtF(x)x2xxlnxx2xlnx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com