All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 6475 by WAI LIN last updated on 28/Jun/16
Findasolutionoftheform∅(x)=xr∑αk=0ckxk(x>0)forxy″+y′−y=0.
Commented by Yozzii last updated on 29/Jun/16
∅(x)=∑αk=0ckxk+r=c0xr+c1xr+1+c2xr+2+...+ckxk+r+...+cαxα+r∅′(x)=∑αk=0ck(k+r)xk+r−1∅′(x)=c0rxr−1+c1(r+1)xr+c2(r+2)xr+1+c3(r+3)xr+2+...+ck(r+k)xk+r−1+...+cα(r+α)xα+r−1∅′(x)−∅(x)=c0rxr−1+(c1(r+1)−c0)xr+(c2(r+2)−c1)xr+1+...+(ck(r+k)−ck−1)xr+k−1+...+(cα(r+α)−cα−1)xr+α−1−cαxr+α∅′(x)−∅(x)=c0rxr−1−cαxr+α+∑αk=1(ck(r+k)−ck−1)xr+k−1x∅″(x)=∑αk=0ck(k+r)(k+r−1)xk+r−1x∅″(x)=c0r(r−1)xr−1+c1(r+1)rxr+c2(r+2)(r+1)xr+1+c3(r+3)(r+2)xr+2+...+ck(k+r)(k+r−1)xk+r−1+...+cα(r+α)(α+r−1)xα+r−1x∅″(x)=c0r(r−1)xr−1+∑αk=1ck(k+r)(k+r−1)xk+r−1x∅″(x)+∅′(x)−∅(x)=0∴xr−1(c0r2−c0r+c0r)−cαxr+α+∑αk=1xk+r−1(ck(k+r)2−ck−1)=0c0r2xr−1−cαxr+α+∑αk=1xk+r−1(ck(k+r)−ck−1)=0⇒c0=cα=0∴c1(1+r)−c0=0⇒c1=0c2(2+r)−c1=0⇒c2=0c3(3+r)−c2=0⇒c3=0∴ck=0∀k∈Z⩾∴∅(x)=0+0+0+0+...+0=0
Commented by nburiburu last updated on 29/Jun/16
xy″+y′=(xy′)′=yify=xw⇒(w)2.xw−1=xwwhichisimpossibleforw∈Rsotheonlywaytocontinuewouldbetoassumew=w(x)y=xw(x)⇒(w.xw)′=xw[w′(1+lnx)+w2/x]=xww′(1+lnx)+w2x=1w′(x+xlnx)+w2=xhomogeneussolution:w′(x+xlnx)+w2=01wh2dwh=−1x(1+lnx)dx−1wh=−ln(1+lnx)wh=1ln(1+lnx)Note:fortheeqtohavethestructurementionasϕ(x)theeqshouldbex2y″+xy′−y=0
Commented by WAI LIN last updated on 01/Jul/16
Usingthepowerseriesmethod(Frobeniusmethod)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com