Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 6475 by WAI LIN last updated on 28/Jun/16

Find a solution of the form ∅(x)=x^r Σ_(k=0) ^α c_k x^k  (x > 0) for   xy^(′′) + y′ − y = 0.

Findasolutionoftheform(x)=xrαk=0ckxk(x>0)forxy+yy=0.

Commented by Yozzii last updated on 29/Jun/16

∅(x)=Σ_(k=0) ^α c_k x^(k+r) =c_0 x^r +c_1 x^(r+1) +c_2 x^(r+2) +...+c_k x^(k+r) +...+c_α x^(α+r)   ∅′(x)=Σ_(k=0) ^α c_k (k+r)x^(k+r−1)   ∅′(x)=c_0 rx^(r−1) +c_1 (r+1)x^r +c_2 (r+2)x^(r+1) +c_3 (r+3)x^(r+2) +...+c_k (r+k)x^(k+r−1) +...+c_α (r+α)x^(α+r−1)   ∅′(x)−∅(x)=c_0 rx^(r−1) +(c_1 (r+1)−c_0 )x^r +(c_2 (r+2)−c_1 )x^(r+1) +...+(c_k (r+k)−c_(k−1) )x^(r+k−1) +...+(c_α (r+α)−c_(α−1) )x^(r+α−1) −c_α x^(r+α)   ∅′(x)−∅(x)=c_0 rx^(r−1) −c_α x^(r+α) +Σ_(k=1) ^α (c_k (r+k)−c_(k−1) )x^(r+k−1)   x∅′′(x)=Σ_(k=0) ^α c_k (k+r)(k+r−1)x^(k+r−1)   x∅′′(x)=c_0 r(r−1)x^(r−1) +c_1 (r+1)rx^r +c_2 (r+2)(r+1)x^(r+1) +c_3 (r+3)(r+2)x^(r+2) +...+c_k (k+r)(k+r−1)x^(k+r−1) +...+c_α (r+α)(α+r−1)x^(α+r−1)   x∅′′(x)=c_0 r(r−1)x^(r−1) +Σ_(k=1) ^α c_k (k+r)(k+r−1)x^(k+r−1)   x∅′′(x)+∅′(x)−∅(x)=0  ∴ x^(r−1) (c_0 r^2 −c_0 r+c_0 r)−c_α x^(r+α) +Σ_(k=1) ^α x^(k+r−1) (c_k (k+r)^2 −c_(k−1) )=0  c_0 r^2 x^(r−1) −c_α x^(r+α) +Σ_(k=1) ^α x^(k+r−1) (c_k (k+r)−c_(k−1) )=0  ⇒c_0 =c_α =0  ∴c_1 (1+r)−c_0 =0⇒c_1 =0  c_2 (2+r)−c_1 =0⇒c_2 =0  c_3 (3+r)−c_2 =0⇒c_3 =0  ∴ c_k =0 ∀k∈Z^≥   ∴ ∅(x)=0+0+0+0+...+0=0

(x)=αk=0ckxk+r=c0xr+c1xr+1+c2xr+2+...+ckxk+r+...+cαxα+r(x)=αk=0ck(k+r)xk+r1(x)=c0rxr1+c1(r+1)xr+c2(r+2)xr+1+c3(r+3)xr+2+...+ck(r+k)xk+r1+...+cα(r+α)xα+r1(x)(x)=c0rxr1+(c1(r+1)c0)xr+(c2(r+2)c1)xr+1+...+(ck(r+k)ck1)xr+k1+...+(cα(r+α)cα1)xr+α1cαxr+α(x)(x)=c0rxr1cαxr+α+αk=1(ck(r+k)ck1)xr+k1x(x)=αk=0ck(k+r)(k+r1)xk+r1x(x)=c0r(r1)xr1+c1(r+1)rxr+c2(r+2)(r+1)xr+1+c3(r+3)(r+2)xr+2+...+ck(k+r)(k+r1)xk+r1+...+cα(r+α)(α+r1)xα+r1x(x)=c0r(r1)xr1+αk=1ck(k+r)(k+r1)xk+r1x(x)+(x)(x)=0xr1(c0r2c0r+c0r)cαxr+α+αk=1xk+r1(ck(k+r)2ck1)=0c0r2xr1cαxr+α+αk=1xk+r1(ck(k+r)ck1)=0c0=cα=0c1(1+r)c0=0c1=0c2(2+r)c1=0c2=0c3(3+r)c2=0c3=0ck=0kZ(x)=0+0+0+0+...+0=0

Commented by nburiburu last updated on 29/Jun/16

xy′′+y′=(xy′)′=y  if y=x^w  ⇒ (w)^2 .x^(w−1) =x^w  which is impossible for w∈R  so the only way to continue would be  to assume w=w(x)  y=x^(w(x)) ⇒(w.x^w )′=x^w [w′(1+ln x)+w^2 /x]=x^w   w′(1+lnx)+(w^2 /x)=1  w′(x+xlnx)+w^2 =x  homogeneus solution:  w′(x+xlnx)+w^2 =0  (1/w_h ^2 ) dw_h  = ((−1)/(x(1+lnx)))dx  −(1/w_h ) = − ln(1+lnx)  w_h =(1/(ln(1+lnx)))    Note: for the eq to have the structure  mention as φ(x) the eq should be  x^2 y′′+xy′−y=0

xy+y=(xy)=yify=xw(w)2.xw1=xwwhichisimpossibleforwRsotheonlywaytocontinuewouldbetoassumew=w(x)y=xw(x)(w.xw)=xw[w(1+lnx)+w2/x]=xww(1+lnx)+w2x=1w(x+xlnx)+w2=xhomogeneussolution:w(x+xlnx)+w2=01wh2dwh=1x(1+lnx)dx1wh=ln(1+lnx)wh=1ln(1+lnx)Note:fortheeqtohavethestructurementionasϕ(x)theeqshouldbex2y+xyy=0

Commented by WAI LIN last updated on 01/Jul/16

Using the power series method(Frobenius method)

Usingthepowerseriesmethod(Frobeniusmethod)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com