Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 119849 by benjo_mathlover last updated on 27/Oct/20

Find all pair(x,y) of real numbers  that are the solutions to the system   { ((x^4 +2x^3 −y=−(1/4)+(√3))),((y^4 +2y^3 −x=−(1/4)−(√3))) :}

Findallpair(x,y)ofrealnumbersthatarethesolutionstothesystem{x4+2x3y=14+3y4+2y3x=143

Answered by 1549442205PVT last updated on 27/Oct/20

Adding up two the equations we get  x^4 +2x^3 −y+(1/4)+y^4 +2y^3 −x+(1/4)=0  ⇔(x^2 +x−(1/2))^2 +(y^2 +y−(1/2))^2 =0  ⇔ { ((x^2 +x−(1/2)=0)),((y^2 +y−(1/2)=0)) :}  Δ=1+4.0.5=3,so x= { ((x=((−1±(√3))/2))),((y=((−1±(√3))/2))) :}  Thus the solutions of given system are  (x,y)∈{(((−1−(√3))/2),((−1−(√3))/2)),(((−1−(√3))/2),((−1+(√3))/2))  ,(((−1+(√3))/2),((−1−(√3))/2)),(((−1+(√3))/2),((−1+(√3))/2))}

Addinguptwotheequationswegetx4+2x3y+14+y4+2y3x+14=0(x2+x12)2+(y2+y12)2=0{x2+x12=0y2+y12=0Δ=1+4.0.5=3,sox={x=1±32y=1±32Thusthesolutionsofgivensystemare(x,y){(132,132),(132,1+32),(1+32,132),(1+32,1+32)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com