Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 217359 by ArshadS last updated on 11/Mar/25

Find all three-digit numbers such that when the number is  divided by the sum of its digits the quotient is 7 and the   remainder is 5.

Findallthreedigitnumberssuchthatwhenthenumberisdividedbythesumofitsdigitsthequotientis7andtheremainderis5.

Answered by Rasheed.Sindhi last updated on 12/Mar/25

100h+10t+u=7(h+t+u)+5  93h+3t−6u=5  3(31h+t−2u)=5  lhs is multiple of 3 while rhs is not  ⇒digits h,t,u are impossible.

100h+10t+u=7(h+t+u)+593h+3t6u=53(31h+t2u)=5lhsismultipleof3whilerhsisnotdigitsh,t,uareimpossible.

Commented by ArshadS last updated on 13/Mar/25

Ok sir!

Oksir!

Answered by nikif99 last updated on 11/Mar/25

Let numbers a^− b^− c^− ,   where a∈{1,..,9} and b, c∈{0,..,9}  100a+10b+c=7(a+b+c)+5⇔  93a+3b−6c=5 (1)  if a≥2⇒93×2+3b−6c=5 impossible  ⇒a=1  (1): 93+3b−6c=5⇔6c−3b=88⇒  6c≥88⇒c≥14 impossible  No such three digit numbers.

Letnumbersabc,wherea{1,..,9}andb,c{0,..,9}100a+10b+c=7(a+b+c)+593a+3b6c=5(1)ifa293×2+3b6c=5impossiblea=1(1):93+3b6c=56c3b=886c88c14impossibleNosuchthreedigitnumbers.

Commented by ArshadS last updated on 13/Mar/25

Thanks sir!

Thankssir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com