Question and Answers Forum

All Questions      Topic List

Electrostatics Questions

Previous in All Question      Next in All Question      

Previous in Electrostatics      Next in Electrostatics      

Question Number 33400 by rahul 19 last updated on 15/Apr/18

Find out electric field on an axial   position due to a ring having linear  charge density 𝛌= λ_0  cos θ .

Findoutelectricfieldonanaxialpositionduetoaringhavinglinearchargedensityλ=λ0cosθ.

Commented by ajfour last updated on 16/Apr/18

Commented by ajfour last updated on 16/Apr/18

Commented by ajfour last updated on 16/Apr/18

E_⊥ ^� =(dQ/(4πε_0 r^2 ))((R/r))(−cos θj^� −sin θk^� )  [in diagram above i forgot to  include the   ((R/r))  factor  ]       =((λ_0 R^2 cos θdθ)/(4πε_0 r^3 )) (−cos θj^� −sin θk^� )  E_x =0  ,  E_z =0  E_y =−((λ_0 R^2 )/(4πε_0 (x^2 +R^2 )^(3/2) )) ∫_0 ^(  2π) cos^2 θdθ       =−((λ_0 R^2 )/(4πε_0 (x^2 +R^2 )^(3/2) ))×(1/2)∫_0 ^(  2π) (1+cos 2θ)dθ    =−((λ_0 R^2 )/(4πε_0 (x^2 +R^2 )^(3/2) ))×(1/2)(2π)  E = ∣E_y ∣=((𝛌_0 R^2 )/(4𝛆_0 (x^2 +R^2 )^(3/2) ))  .

E¯=dQ4πϵ0r2(Rr)(cosθj^sinθk^)[indiagramaboveiforgottoincludethe(Rr)factor]=λ0R2cosθdθ4πϵ0r3(cosθj^sinθk^)Ex=0,Ez=0Ey=λ0R24πϵ0(x2+R2)3/202πcos2θdθ=λ0R24πϵ0(x2+R2)3/2×1202π(1+cos2θ)dθ=λ0R24πϵ0(x2+R2)3/2×12(2π)E=Ey∣=λ0R24ϵ0(x2+R2)3/2.

Commented by rahul 19 last updated on 16/Apr/18

thank u sir.

thankusir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com