Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 83341 by mr W last updated on 01/Mar/20

Find the maximum and minimum  of the expression 𝚺_(i=1) ^n a_i x_i  with  𝚺_(i=1) ^n (x_i −b_i )^2 =c^2 , where a_i , b_i  and c are  constants.    (extracted and modified from Q83331)

FindthemaximumandminimumDouble subscripts: use braces to clarifyni=1(xibi)2=c2,whereai,biandcareconstants.(extractedandmodifiedfromQ83331)

Commented by mr W last updated on 01/Mar/20

Solution:  in nD space Σ_(i=1) ^n (x_i −b_i )^2 =c^2  represents  a sphere with  center at the point  B(b_1 ,b_2 ,...,b_n ) and radius c.  let Σ_(i=1) ^n a_i x_i =s.   Σ_(i=1) ^n a_i x_i =s represents a plane which  intercepts the x_i −axis at (a_i /s).  when the plane tangents the sphere  we′ll get the maximum and minimum  value from s.  i.e. the distance from point B to the  plane should be equal to the radius of  the sphere.  ((∣Σ_(i=1) ^n a_i b_i −s∣)/(√(Σ_(i=1) ^n a_i ^2 )))=c  ⇒Σ_(i=1) ^n a_i b_i −s=±c(√(Σ_(i=1) ^n a_i ^2 ))  ⇒s=Σ_(i=1) ^n a_i b_i ±c(√(Σ_(i=1) ^n a_i ^2 ))  i.e. Σ_(i=1) ^n a_i b_i −c(√(Σ_(i=1) ^n a_i ^2 ))≤Σ_(i=1) ^n a_i x_i ≤Σ_(i=1) ^n a_i b_i +c(√(Σ_(i=1) ^n a_i ^2 ))    special case: c=1 and b_i =0  with Σ_(i=1) ^n x_i ^2 =1  −(√(Σ_(i=1) ^n a_i ^2 ))≤Σ_(i=1) ^n a_i x_i ≤(√(Σ_(i=1) ^n a_i ^2 ))

Solution:innDspaceni=1(xibi)2=c2representsaspherewithcenteratthepointB(b1,b2,...,bn)andradiusc.letni=1aixi=s.ni=1aixi=srepresentsaplanewhichinterceptsthexiaxisatais.whentheplanetangentsthespherewellgetthemaximumandminimumvaluefroms.i.e.thedistancefrompointBtotheplaneshouldbeequaltotheradiusofthesphere.ni=1aibisni=1ai2=cni=1aibis=±cni=1ai2s=ni=1aibi±cni=1ai2i.e.ni=1aibicni=1ai2ni=1aixini=1aibi+cni=1ai2specialcase:c=1andbi=0withni=1xi2=1ni=1ai2ni=1aixini=1ai2

Answered by M±th+et£s last updated on 01/Mar/20

Commented by mr W last updated on 01/Mar/20

thanks sir!  this is the general way. but if possible,  i prefer an obvious and visible way,  for example a geometrical way.

thankssir!thisisthegeneralway.butifpossible,ipreferanobviousandvisibleway,forexampleageometricalway.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com