All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 83341 by mr W last updated on 01/Mar/20
FindthemaximumandminimumDouble subscripts: use braces to clarifyDouble subscripts: use braces to clarify∑ni=1(xi−bi)2=c2,whereai,biandcareconstants.(extractedandmodifiedfromQ83331)
Commented by mr W last updated on 01/Mar/20
Solution:innDspace∑ni=1(xi−bi)2=c2representsaspherewithcenteratthepointB(b1,b2,...,bn)andradiusc.let∑ni=1aixi=s.∑ni=1aixi=srepresentsaplanewhichinterceptsthexi−axisatais.whentheplanetangentsthespherewe′llgetthemaximumandminimumvaluefroms.i.e.thedistancefrompointBtotheplaneshouldbeequaltotheradiusofthesphere.∣∑ni=1aibi−s∣∑ni=1ai2=c⇒∑ni=1aibi−s=±c∑ni=1ai2⇒s=∑ni=1aibi±c∑ni=1ai2i.e.∑ni=1aibi−c∑ni=1ai2⩽∑ni=1aixi⩽∑ni=1aibi+c∑ni=1ai2specialcase:c=1andbi=0with∑ni=1xi2=1−∑ni=1ai2⩽∑ni=1aixi⩽∑ni=1ai2
Answered by M±th+et£s last updated on 01/Mar/20
thankssir!thisisthegeneralway.butifpossible,ipreferanobviousandvisibleway,forexampleageometricalway.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com