All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 111725 by Aina Samuel Temidayo last updated on 04/Sep/20
Findthepositiveintegernsuchthattan−1(13)+tan−1(14)+tan−1(15)+tan−1(1n)=π4
Answered by $@y@m last updated on 04/Sep/20
Lettan−1(13)=α⇒tanα=13Lettan−1(14)=β⇒tanβ=14Lettan−1(15)=γ⇒tanγ=15Lettan−1(1n)=δ⇒tanδ=1nATQ,α+β+γ+δ=π4α+β+γ=π4−δtan(α+β+γ)=tan(π4−δ)13+14+15−13.4.51−13.4−14.5−15.3=1−tanδ1+tanδ1−tanδ1+tanδ=20+15+12−16060−5−3−460=4648=232424(1−tanδ)=23(1+tanδ)1=47tanδtanδ=147δ=tan−1(147)n=47
Commented by Aina Samuel Temidayo last updated on 04/Sep/20
47ispartoftheoptionsIhavehere.Thanks.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com