Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 18968 by chux last updated on 02/Aug/17

Find the side lengths of a triangle  if side lengths are consecutive   integers,and one of whose angles  is twice as large as another.

Findthesidelengthsofatriangleifsidelengthsareconsecutiveintegers,andoneofwhoseanglesistwiceaslargeasanother.

Commented by chux last updated on 02/Aug/17

please help

pleasehelp

Answered by mrW1 last updated on 03/Aug/17

a=n−1  b=n  c=n+1    case 1:  A=α  C=2α  B=180−3α  ((sin A)/a)=((sin B)/b)=((sin C)/c)  ((sin α)/(n−1))=((sin (3α))/n)=((sin (2α))/(n+1))  ((sin (2α))/(sin α))=2cos α=((n−1)/(n+1))  ((sin (3α))/(sin α))=((3 sin α−4 sin^3  α)/(sin α))=3−4sin^2  α=(2cos α)^2 −1=(n/(n−1))  (((n+1)/(n−1)))^2 −1=(n/(n−1))  (((n+1)/(n−1))+1)(((n+1)/(n−1))−1)=(n/(n−1))  (4/(n−1))=1  ⇒n=5  ⇒sides of triangle =4,5,6    case 2:  ((sin α)/(n−1))=((sin (2α))/n)=((sin (3α))/(n+1))  ((sin (2α))/(sin α))=2cos α=(n/(n−1))  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n+1)/(n−1))  ((n/(n−1))−1)((n/(n−1))+1)=((n+1)/(n+1))  ((2n−1)/(n−1))=n+1  ⇒n=2 (not suitable, it′s a straight)    case 3:  ((sin (3α))/(n−1))=((sin α)/n)=((sin (2α))/(n+1))  ((sin (2α))/(sin α))=2cos α=((n+1)/n)  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n−1)/n)  (((n+1)/n)−1)(((n+1)/n)+1)=((n−1)/n)  ⇒n=−2 <0 (not suitable)    case 4:  ((sin (3α))/(n−1))=((sin (2α))/n)=((sin α)/(n+1))  ((sin (2α))/(sin α))=2cos α=(n/(n+1))  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n−1)/(n+1))  ((n/(n+1))−1)((n/(n+1))+1)=((n−1)/(n+1))  ⇒n=−2<0 (not suitable)    case 5:  ((sin (2α))/(n−1))=((sin α)/n)=((sin (3α))/(n+1))  ((sin (2α))/(sin α))=2cos α=((n−1)/n)  ((sin (3α))/(sin α))=(2cos α)^2 −1=((n+1)/n)  (((n−1)/n)+1)(((n−1)/n)−1)=((n+1)/n)  n=−2<0 (not suitable)    case 6:  ((sin (2α))/(n−1))=((sin (3α))/n)=((sin α)/(n+1))  ((sin (2α))/(sin α))=2cos α=((n−1)/(n+1))  ((sin (3α))/(sin α))=(2cos α)^2 −1=(n/(n+1))  (((n−1)/(n+1))+1)(((n−1)/(n+1))−1)=(n/(n+1))  ((−4)/(n+1))=1  ⇒n=−5<0 (not suitable)    ⇒the only solution is:  4,5,6

a=n1b=nc=n+1case1:A=αC=2αB=1803αsinAa=sinBb=sinCcsinαn1=sin(3α)n=sin(2α)n+1sin(2α)sinα=2cosα=n1n+1sin(3α)sinα=3sinα4sin3αsinα=34sin2α=(2cosα)21=nn1(n+1n1)21=nn1(n+1n1+1)(n+1n11)=nn14n1=1n=5sidesoftriangle=4,5,6case2:sinαn1=sin(2α)n=sin(3α)n+1sin(2α)sinα=2cosα=nn1sin(3α)sinα=(2cosα)21=n+1n1(nn11)(nn1+1)=n+1n+12n1n1=n+1n=2(notsuitable,itsastraight)case3:sin(3α)n1=sinαn=sin(2α)n+1sin(2α)sinα=2cosα=n+1nsin(3α)sinα=(2cosα)21=n1n(n+1n1)(n+1n+1)=n1nn=2<0(notsuitable)case4:sin(3α)n1=sin(2α)n=sinαn+1sin(2α)sinα=2cosα=nn+1sin(3α)sinα=(2cosα)21=n1n+1(nn+11)(nn+1+1)=n1n+1n=2<0(notsuitable)case5:sin(2α)n1=sinαn=sin(3α)n+1sin(2α)sinα=2cosα=n1nsin(3α)sinα=(2cosα)21=n+1n(n1n+1)(n1n1)=n+1nn=2<0(notsuitable)case6:sin(2α)n1=sin(3α)n=sinαn+1sin(2α)sinα=2cosα=n1n+1sin(3α)sinα=(2cosα)21=nn+1(n1n+1+1)(n1n+11)=nn+14n+1=1n=5<0(notsuitable)theonlysolutionis:4,5,6

Commented by chux last updated on 03/Aug/17

but B=3α

butB=3α

Commented by ajfour last updated on 03/Aug/17

The same here. Thank you Sir.

Thesamehere.ThankyouSir.

Commented by chux last updated on 02/Aug/17

wow..... this is amazing!  i m most grateful sir.

wow.....thisisamazing!immostgratefulsir.

Commented by mrW1 last updated on 03/Aug/17

since we don′t know which angle is  as double so large as which other angle,  we must try out all 6 possibilities:  A=α, B=2α, C=180−3α  A=α, B=180−3α, C=2α  A=2α, B=α, C=180−3α  A=180−3α, B=α, C=2α  A=2α, B=180−3α, C=α  A=180−3α, B=2α, C=α    note: sin (180−3α)=sin (3α)

sincewedontknowwhichangleisasdoublesolargeaswhichotherangle,wemusttryoutall6possibilities:A=α,B=2α,C=1803αA=α,B=1803α,C=2αA=2α,B=α,C=1803αA=1803α,B=α,C=2αA=2α,B=1803α,C=αA=1803α,B=2α,C=αnote:sin(1803α)=sin(3α)

Commented by chux last updated on 03/Aug/17

i′ve understood it now... its clear  sir.

iveunderstooditnow...itsclearsir.

Commented by chux last updated on 04/Aug/17

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com