All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 21825 by Joel577 last updated on 05/Oct/17
Findthesimplestformof∑nk=12k[sin2(2kπ3)+14]
Commented by sma3l2996 last updated on 05/Oct/17
wehave:sin(2kπ3)=sin(2π3)so∑nk=12k(sin2(2kπ3)+14)=∑nk=12k(sin22π3+14)=∑nk=12k((32)2+14)=∑nk=12k(34+14)=∑nk=12kletak=2k=a1qk−1=2×2k−1soq=a1=2letSn=a1+a2+...+an=a1(qn−1)q−1Sn=∑nk=02k=2(2n−1)2−1=2(2n−1)so∑nk=02k(sin2(2kπ3)+14)=2n+1−2
Commented by Joel577 last updated on 05/Oct/17
butifk=3,thensin2(6π3)≠sin2(2π3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com