Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 86018 by Maclaurin Stickker last updated on 26/Mar/20

Find the three last digits of 5^(9999) .

Findthethreelastdigitsof59999.

Answered by MJS last updated on 26/Mar/20

5^1      005  5^2      025  5^3      125  5^4      625  5^5      125  5^6      625  ...  5^(2n+1)      125  5^(2n)           625  9999=2×4999+1 ⇒ answer is 125

510055202553125546255512556625...52n+112552n6259999=2×4999+1answeris125

Answered by Serlea last updated on 26/Mar/20

5=5(mod1000)  5^2 =25(mod1000)  5^4 =625(mod1000)  5^6 =625(mod1000)  So for all even number ′′x′  5^x =625(mod1000) if x≥4  5^3 =125(mod1000)  5^5 =125(mod1000)  So for all odd number ′′Y′′  5^y =125(mld1000) if Y≥3  With that  5^(9999) =5^(9998+1) =(5^(9998) )(5^1 )  =625×5(mod1000)  =5^4 (mod1000)  =125

5=5(mod1000)52=25(mod1000)54=625(mod1000)56=625(mod1000)Soforallevennumberx5x=625(mod1000)ifx453=125(mod1000)55=125(mod1000)SoforalloddnumberY5y=125(mld1000)ifY3Withthat59999=59998+1=(59998)(51)=625×5(mod1000)=54(mod1000)=125

Terms of Service

Privacy Policy

Contact: info@tinkutara.com