Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 7532 by Yozzia last updated on 02/Sep/16

Find x_n  (n∈Z) satisfying x_0 =0, x_1 =1 and  x_(n+1) =x_n (√(x_(n−1) ^2 +1))+x_(n−1) (√(x_n ^2 +1)) for n≥1.

Findxn(nZ)satisfyingx0=0,x1=1andxn+1=xnxn12+1+xn1xn2+1forn1.

Commented by sou1618 last updated on 03/Sep/16

when n=1    x_2 =1  when n=2    x_3 =2(√2)  when n=3    x_4 =2(√2)(√2)+(√(8+1))=7  ...  when n>2     x_n ,x_(n−1) >1  x_(n+1) =x_n (√(x_(n−1) ^2 +1))+x_(n−1) (√(x_n ^2 +1))∙∙∙(∗)  x_n =(1/2)(y_n −(1/y_n ))(y_n ≥1)  (1/2)(y_(n+1) −y_(n+1) ^(−1) )=(1/2)(y_n −y_n ^(−1) )(1/2)(y_(n−1) +y_(n−1) ^(−1) )+(1/2)(y_(n−1) −y_(n−1) ^(−1) )(1/2)(y_n +y_n ^(−1) )  2(y_(n+1) −y_(n+1) ^(−1) )=(y_n −y_n ^(−1) )(y_(n−1) +y_(n−1) ^(−1) )+(y_(n−1) −y_(n−1) ^(−1) )(y_n +y_n ^(−1) )  2(y_(n+1) −y_(n+1) ^(−1) )=2y_n y_(n−1) −2y_n ^(−1) y_n ^(−1)   y_(n+1) −(1/y_(n+1) )=y_n y_(n−1) −(1/(y_n y_(n−1) ))  y_(n+1) ^2 −(y_n y_(n−1) −(1/(y_n y_(n−1) )))y_(n+1) −1=0  (y_(n+1) −y_n y_(n−1) )(y_(n+1) +(1/(y_n y_(n−1) )))=0  y_(n+1) =y_n y_(n−1) (∵y_n >0)    x_0 =0,y_0 ^2 −0y_0 −1=0     y_0 =1  x_1 =1,y_1 ^2 −2y_1 −1=0    y_1 =1+(√2)  y_n =y_(n−1) y_(n−2) =y_(n−2) ^2 y_(n−3) =y_(n−3) ^3 y_(n−4) ^2 =y_(n−4) ^5 y_(n−5) ^3 =...  y_2 =1(1+(√2)),y_3 =(1+(√2))^2 ,y_4 =(1+(√2))^3 ,y_5 =(1+(√2))^5 ...  1 1 2 3 5 8 13 21...fibonacci  y_n =(1+(√2))^(f(n))     { ((f(n)=f(n−1)+f(n−2))),((f(0)=0,f(1)=1)) :}  f(n)=(1/(√5)){(((1+(√5))/2))^n −(((1−(√5))/2))^n }       =((φ^n −(−φ)^(−n) )/(√5)),(φ=((1+(√5))/2))      x_n =(1/2){(1+(√2))^(f(n)) −(1+(√2))^(−f(n)) }  ++++++++++++  x_0 =(1/2){(1+(√2))^0 −(1+(√2))^0 }=0  x_1 =(1/2){1+(√2)−(1/(1+(√2)))}=(((1+(√2))^2 −1^2 )/(2(1+(√2))))=1  x_2 =x_1 =1  x_3 =(1/2){(1+(√2))^2 −(1/((1+(√2))^2 ))}=((((1+(√2))^2 )^2 −1^2 )/(2(1+(√2))^2 ))      =(((3+2(√2)+1)(3+2(√2)−1))/(2(1+(√2))^2 ))      =(((2(√2)(1+(√2)))(2(1+(√2))))/(2(1+(√2))^2 ))=2(√2)  ...

whenn=1x2=1whenn=2x3=22whenn=3x4=222+8+1=7...whenn>2xn,xn1>1xn+1=xnxn12+1+xn1xn2+1()xn=12(yn1yn)(yn1)12(yn+1yn+11)=12(ynyn1)12(yn1+yn11)+12(yn1yn11)12(yn+yn1)2(yn+1yn+11)=(ynyn1)(yn1+yn11)+(yn1yn11)(yn+yn1)2(yn+1yn+11)=2ynyn12yn1yn1yn+11yn+1=ynyn11ynyn1yn+12(ynyn11ynyn1)yn+11=0(yn+1ynyn1)(yn+1+1ynyn1)=0yn+1=ynyn1(yn>0)x0=0,y020y01=0y0=1x1=1,y122y11=0y1=1+2yn=yn1yn2=yn22yn3=yn33yn42=yn45yn53=...y2=1(1+2),y3=(1+2)2,y4=(1+2)3,y5=(1+2)5...1123581321...fibonacciyn=(1+2)f(n){f(n)=f(n1)+f(n2)f(0)=0,f(1)=1f(n)=15{(1+52)n(152)n}=ϕn(ϕ)n5,(ϕ=1+52)xn=12{(1+2)f(n)(1+2)f(n)}++++++++++++x0=12{(1+2)0(1+2)0}=0x1=12{1+211+2}=(1+2)2122(1+2)=1x2=x1=1x3=12{(1+2)21(1+2)2}=((1+2)2)2122(1+2)2=(3+22+1)(3+221)2(1+2)2=(22(1+2))(2(1+2))2(1+2)2=22...

Commented by sou1618 last updated on 03/Sep/16

if you need fibonacci=f(n)  a_0 =0,a_1 =1  a_n =a_(n−1) +a_(n−2) (n≥2)  a_n −pa_(n−1) =q(a_(n−1) −pa_(n−2) )  a_n =(p+q)a_(n−1) −pqa_(n−2)    { ((p+q=1)),((pq=−1)) :}  p^2 −p+p=0  p=((1±(√5))/2)  (p,q)=(((1+(√5))/2),((1−(√5))/2))   { ((a_n −pa_(n−1) =q(a_(n−1) −pa_(n−2) ))),((a_n −qa_(n−1) =p(a_(n−1) −qa_(n−2) ))) :}  when n=2   { ((a_1 −pa_0 =1)),((a_1 −qa_0 =1)) :}  so   { ((a_n −pa_(n−1) =q^(n−1) ∙∙∙(1))),((a_n −qa_(n−1) =p^(n−1) ∙∙∙(2))) :}  (2)−(1)⇒  (p−q)a_(n−1) =p^(n−1) −q^(n−1)   a_n =(1/(p−q))(p^n −q^n )  a_n =(1/(√5)){(((1+(√5))/2))^n −(((1−(√5))/2))^n }    f(n)=a_n

ifyouneedfibonacci=f(n)a0=0,a1=1an=an1+an2(n2)anpan1=q(an1pan2)an=(p+q)an1pqan2{p+q=1pq=1p2p+p=0p=1±52(p,q)=(1+52,152){anpan1=q(an1pan2)anqan1=p(an1qan2)whenn=2{a1pa0=1a1qa0=1so{anpan1=qn1(1)anqan1=pn1(2)(2)(1)(pq)an1=pn1qn1an=1pq(pnqn)an=15{(1+52)n(152)n}f(n)=an

Commented by Yozzia last updated on 03/Sep/16

Nicely! What if you let x_n =sinh{u(n)} initially?

Nicely!Whatifyouletxn=sinh{u(n)}initially?

Commented by sou1618 last updated on 03/Sep/16

it′s nice idea!!  x_n =sinh(u_n )  sinh(u_(n+1) )=sinh(u_n )cosh(u_(n−1) )+sinh(u_(n−1) )cosh(u_n )  sinh(u_(n+1) )=sinh(u_n +u_(n−1) )  u_(n+1) =u_n +u_(n−1)   u_0 =0  u_1 =ln(1+(√2))  so  u_n =ln(1+(√2))×f(n)    x_n =sinh{ln(1+(√2))f(n)}     =(1/2){(1+(√2))^(f(n)) −(1+(√2))^(−f(n)) }

itsniceidea!!xn=sinh(un)sinh(un+1)=sinh(un)cosh(un1)+sinh(un1)cosh(un)sinh(un+1)=sinh(un+un1)un+1=un+un1u0=0u1=ln(1+2)soun=ln(1+2)×f(n)xn=sinh{ln(1+2)f(n)}=12{(1+2)f(n)(1+2)f(n)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com