Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 184819 by cortano1 last updated on 12/Jan/23

  For 0≤x≤1 , maximum value    of f(x)=x(√(1−x+(√(1−x)))) is __

For0x1,maximumvalueoff(x)=x1x+1xis__

Answered by Frix last updated on 12/Jan/23

f′(x)=0  −((5x−4+2(3x−2)(√(1−x)))/(4(√(1−x))(√(1−x+(√(1−x))))))=0  2(3x−2)(√(1−x))=4−5x  Squaring and transforming  x(x^2 −((59)/(36))x+(2/3))=0  x=0 [obviously wrong as f′(0)=(√2)]  x=(8/9) [also wrong as f′((8/9))=−1]  x=(3/4) [f′((3/4))=0]  f((3/4))=((3(√3))/8)

f(x)=05x4+2(3x2)1x41x1x+1x=02(3x2)1x=45xSquaringandtransformingx(x25936x+23)=0x=0[obviouslywrongasf(0)=2]x=89[alsowrongasf(89)=1]x=34[f(34)=0]f(34)=338

Answered by Frix last updated on 12/Jan/23

Let t=(√(1−x))≥0 ⇔ x=1−t^2   f(t)=(1−t^2 )(√(t^2 +t))  f′(t)=0  −((6t^3 +5t^2 −2t−1)/(2(√(t^2 +t))))=0  t=−1 [wrong]  t=−(1/3) [wrong]  t=(1/2) ⇒ x=(3/4)

Lett=1x0x=1t2f(t)=(1t2)t2+tf(t)=06t3+5t22t12t2+t=0t=1[wrong]t=13[wrong]t=12x=34

Terms of Service

Privacy Policy

Contact: info@tinkutara.com