Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21235 by Tinkutara last updated on 17/Sep/17

For any integer k, let α_k  = cos (((kπ)/7)) +  i sin (((kπ)/7)), where i = (√(−1)). The value of  the expression ((Σ_(k=1) ^(12) ∣α_(k+1)  − α_k ∣)/(Σ_(k=1) ^3 ∣α_(4k−1)  − α_(4k−2) ∣)) is

Foranyintegerk,letαk=cos(kπ7)+isin(kπ7),wherei=1.Thevalueoftheexpression12k=1αk+1αk3k=1α4k1α4k2is

Answered by sma3l2996 last updated on 17/Sep/17

α_k =e^(i((kπ)/7)) ; α_(k+1) =e^(i(k+1)(π/7))   α_(k+1) −α_k =e^(ik(π/7)) (e^(i(π/7)) −1)  ∣α_(k+1) −α_k ∣=∣e^(ik(π/7)) ∣.∣e^(i(π/7)) −1∣=∣e^(i(π/7)) −1∣  α_(4k−1) =e^(−i(π/7)) .e^(i4k(π/7))    ;  α_(4k−2) =e^(−2i(π/7)) .e^(4ik(π/7))   α_(4k−1) −α_(4k−2) =e^(4ik(π/7)) (e^(−i(π/7)) −e^(−2i(π/7)) )=e^(i(4k−2)(π/7)) (e^(i(π/7)) −1)  so  ∣α_(4k−1) −α_(4k−2) ∣=∣e^(i(4k−2)(π/7)) ∣.∣e^(i(π/7)) −1∣=∣e^(i(π/7)) −1∣  so  : ((Σ_(k=1) ^(12) ∣α_(k+1) −α_k ∣)/(Σ_(k=1) ^3 ∣α_(4k−1) −α_(4k−2) ∣))=((12∣e^(i(π/7)) −1∣)/(3∣e^(i(π/7)) −1∣))=4

αk=eikπ7;αk+1=ei(k+1)π7αk+1αk=eikπ7(eiπ71)αk+1αk∣=∣eikπ7.eiπ71∣=∣eiπ71α4k1=eiπ7.ei4kπ7;α4k2=e2iπ7.e4ikπ7α4k1α4k2=e4ikπ7(eiπ7e2iπ7)=ei(4k2)π7(eiπ71)soα4k1α4k2∣=∣ei(4k2)π7.eiπ71∣=∣eiπ71so:12k=1αk+1αk3k=1α4k1α4k2=12eiπ713eiπ71=4

Commented by Tinkutara last updated on 17/Sep/17

Thank you very much Sir!

ThankyouverymuchSir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com