Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 114

Question Number 4971    Answers: 2   Comments: 7

Question Number 4847    Answers: 0   Comments: 0

(√(6+(√(6+(√(6+(√(6+(√6))))))))) SOLUTION let x = (√(6+(√(6+(√(6+(√(6+(√6))))))))) therefore.. x^(2 ) = 6+(√(6+(√(6+(√(6+(√(6 )))))))) the equation is a continuos funtion Thus x^2 = 6+(√(6+(√(6+(√(6+(√(6+(√6) ))))))))...... since x = (√(6+(√(6+(√(6+(√(6+(√6))))))))) Therdfore x^2 = 6 + x x^2 − x − 6 = 0 x^2 − 3x + 2x − 6 = 0 (x^2 − 3x) + (2x − 6) = 0 x(x − 3) + 2(x − 3) = 0 (x − 3)(x + 2) = 0 x − 3 = 0 or x − 2 = 0 x = 3 or x = −2 since negative is not allowed Thus x = 6 Meaning that (√(6+(√(6+(√(6+(√(6+(√(6 )))))))))) = 3 DONE THANK YOU SO MUCH. I UNDERSTAND THE SOLUTION.

6+6+6+6+6SOLUTIONletx=6+6+6+6+6therefore..x2=6+6+6+6+6theequationisacontinuosfuntionThusx2=6+6+6+6+6+6......sincex=6+6+6+6+6Therdforex2=6+xx2x6=0x23x+2x6=0(x23x)+(2x6)=0x(x3)+2(x3)=0(x3)(x+2)=0x3=0orx2=0x=3orx=2sincenegativeisnotallowedThusx=6Meaningthat6+6+6+6+6=3DONETHANKYOUSOMUCH.IUNDERSTANDTHESOLUTION.

Question Number 4783    Answers: 0   Comments: 1

cos α+β ≈(((cos α+cos β)/(cos^(−1) α+cos^(−1) β)))^(α+β) sin a+b≈(((sin a+sin b)/(sin^(−1) a+sin^(−1) b)))^(a+b) tan (a+(a/b))^k ≈(((tan (a+b)×k)/(tan^(−1) (a+b)×k)))

cosα+β(cosα+cosβcos1α+cos1β)α+βsina+b(sina+sinbsin1a+sin1b)a+btan(a+ab)k(tan(a+b)×ktan1(a+b)×k)

Question Number 4730    Answers: 0   Comments: 1

∫_0 ^(π/2) (dx/(sinx^(cosx ) + cosx^(sinx ) ))

0π2dxsinxcosx+cosxsinx

Question Number 4655    Answers: 0   Comments: 1

Question Number 4612    Answers: 0   Comments: 3

Question Number 4594    Answers: 1   Comments: 0

∫4x^2 − (5/(2x^(−2) )) + 4 dx, x≠0

4x252x2+4dx,x0

Question Number 4579    Answers: 1   Comments: 2

In a right triangle, the mid-point of the hypotenuse is equidistant from all the three vertices of the triangle.

Inarighttriangle,themidpointofthehypotenuseisequidistantfromallthethreeverticesofthetriangle.

Question Number 4578    Answers: 1   Comments: 2

The segment between the mid-points of two sides of a triangle is parallel to the third side and half as long.

Thesegmentbetweenthemidpointsoftwosidesofatriangleisparalleltothethirdsideandhalfaslong.

Question Number 4543    Answers: 1   Comments: 1

Triangle ABC has midpoints D, E and F. By connecting each verticie with the opposite midpoint, we create a cress−section called G. Prove that all three lines cross at point G regardless of the type of triangle

TriangleABChasmidpointsD,EandF.Byconnectingeachverticiewiththeoppositemidpoint,wecreateacresssectioncalledG.ProvethatallthreelinescrossatpointGregardlessofthetypeoftriangle

Question Number 4496    Answers: 0   Comments: 1

This is a simple question but for some silly reason I can′t figure it out... 1. If I have a circle with radius r and area A, and I wish to make a new circle with n times the area, for what new value of r should be used? 2. What if I increase the area from A to A+n? What value of r would be used here?

ThisisasimplequestionbutforsomesillyreasonIcantfigureitout...1.IfIhaveacirclewithradiusrandareaA,andIwishtomakeanewcirclewithntimesthearea,forwhatnewvalueofrshouldbeused?2.WhatifIincreasetheareafromAtoA+n?Whatvalueofrwouldbeusedhere?

Question Number 4505    Answers: 1   Comments: 1

Question Number 4437    Answers: 1   Comments: 0

An ellipse having semi-major axis length a and semi-minor axis length b and a circle having radius r have equal area. Express r in terms of a and b.

Anellipsehavingsemimajoraxislengthaandsemiminoraxislengthbandacirclehavingradiusrhaveequalarea.Expressrintermsofaandb.

Question Number 4409    Answers: 1   Comments: 1

Divide a circle into two congruent regions such that they have no straightedge.

Divideacircleintotwocongruentregionssuchthattheyhavenostraightedge.

Question Number 4390    Answers: 1   Comments: 0

Question Number 4387    Answers: 0   Comments: 3

Question Number 4384    Answers: 0   Comments: 1

A circle of radius r_1 has been divided into two parts of equal area, by an arc having center on the circle. Determine the radius(r_2 ) of the arc.

Acircleofradiusr1hasbeendividedintotwopartsofequalarea,byanarchavingcenteronthecircle.Determinetheradius(r2)ofthearc.

Question Number 4374    Answers: 0   Comments: 1

Question Number 4356    Answers: 1   Comments: 1

Question Number 4329    Answers: 1   Comments: 1

Question Number 4326    Answers: 3   Comments: 0

hola

hola

Question Number 4318    Answers: 1   Comments: 2

Question Number 4268    Answers: 3   Comments: 0

1+2=

1+2=

Question Number 4219    Answers: 1   Comments: 0

Question Number 4225    Answers: 0   Comments: 0

^• A kite is a quadrilateral having two pairs of adjacent sides equal. Draw a semi-circle inside it touching all the sides using Eucledian tools. ^• Can we show that the above semi-circle is of the laregest possible area inside the kite?

Akiteisaquadrilateralhavingtwopairsofadjacentsidesequal.DrawasemicircleinsideittouchingallthesidesusingEuclediantools.Canweshowthattheabovesemicircleisofthelaregestpossibleareainsidethekite?

Question Number 4080    Answers: 2   Comments: 1

Prove that inside a square, a semi-circle, which touches all the four sides of the square, is possible with ruler and compass.

Provethatinsideasquare,asemicircle,whichtouchesallthefoursidesofthesquare,ispossiblewithrulerandcompass.

  Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com