Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 96

Question Number 25930    Answers: 2   Comments: 0

A line passes through A(−3, 0) and B(0, −4). A variable line perpendicular to AB is drawn to cut x and y-axes at M and N. Find the locus of the point of intersection of the lines AN and BM.

AlinepassesthroughA(3,0)andB(0,4).AvariablelineperpendiculartoABisdrawntocutxandyaxesatMandN.FindthelocusofthepointofintersectionofthelinesANandBM.

Question Number 25609    Answers: 0   Comments: 4

Question Number 25605    Answers: 1   Comments: 4

Question Number 25602    Answers: 1   Comments: 1

Question Number 25479    Answers: 1   Comments: 0

Question Number 25375    Answers: 1   Comments: 0

what is HCF of(1/(3 )) (2/3) (1/4) ?

whatisHCFof132314?

Question Number 25344    Answers: 1   Comments: 0

If A and B are two points on a circle of radius r, then prove that mAB^(−) ≤2r.

IfAandBaretwopointsonacircleofradiusr,thenprovethatmAB2r.

Question Number 25350    Answers: 0   Comments: 0

If A and B are two points in the plane of a circle having radius r and mAB>2r ,prove that at least one of A or B is outside the circle.

IfAandBaretwopointsintheplaneofacirclehavingradiusrandmAB>2r,provethatatleastoneofAorBisoutsidethecircle.

Question Number 25290    Answers: 2   Comments: 0

∫((x dx)/(√(a^4 +x^4 )))

xdxa4+x4

Question Number 25139    Answers: 1   Comments: 0

What is the real and the imaginary part of the complex number z = (− 1)^(1000003)

Whatistherealandtheimaginarypartofthecomplexnumberz=(1)1000003

Question Number 24831    Answers: 1   Comments: 0

∫_1 ^2 ∫_1 ^2 ln(x+y)dx dy

1212ln(x+y)dxdy

Question Number 24778    Answers: 0   Comments: 4

Show that the shortest distance between two opposite edges a,d of a tetrahedron is 6V/adsin 𝛉, where θ is the angle between the edges and V is the volume of the tetrahedron.

Showthattheshortestdistancebetweentwooppositeedgesa,dofatetrahedronis6V/adsinθ,whereθistheanglebetweentheedgesandVisthevolumeofthetetrahedron.

Question Number 24684    Answers: 0   Comments: 0

Let ABCD be a square and M, N points on sides AB, BC respectably, such that ∠MDN = 45°. If R is the midpoint of MN show that RP = RQ where P, Q are the points of intersection of AC with the lines MD, ND.

LetABCDbeasquareandM,NpointsonsidesAB,BCrespectably,suchthatMDN=45°.IfRisthemidpointofMNshowthatRP=RQwhereP,QarethepointsofintersectionofACwiththelinesMD,ND.

Question Number 24604    Answers: 2   Comments: 0

x^2 −xsin x−cos x=0

x2xsinxcosx=0

Question Number 24303    Answers: 1   Comments: 0

Assertion: Enthalpy of combustion is negative. Reason: Combustion reaction can be exothermic or endothermic.

Assertion:Enthalpyofcombustionisnegative.Reason:Combustionreactioncanbeexothermicorendothermic.

Question Number 24150    Answers: 0   Comments: 0

if y is a function of t then solve this y′′=ksiny diff.equ

ifyisafunctionoftthensolvethisy=ksinydiff.equ

Question Number 24055    Answers: 0   Comments: 2

Any Architect in the house? please i need your help

AnyArchitectinthehouse?pleaseineedyourhelp

Question Number 23871    Answers: 0   Comments: 0

Let ABC be a triangle and B′ be the reflection of B in the line CA and C′ be reflection of C in the line AB. Prove that ΔABC′ ≅ ΔACB′ ≅ ΔABC.

LetABCbeatriangleandBbethereflectionofBinthelineCAandCbereflectionofCinthelineAB.ProvethatΔABCΔACBΔABC.

Question Number 23856    Answers: 0   Comments: 4

The value of (C_0 + C_1 )(C_1 + C_2 ).... (C_(n−1) + C_n ) is (1) (((n + 1)^n )/(n!)) ∙ C_1 C_2 .....C_n (2) (((n − 1)^n )/(n!)) ∙ C_1 C_2 .....C_n (3) (((n)^n )/((n + 1)!)) ∙ C_1 C_2 .....C_n (4) (((n)^n )/(n!)) ∙ C_1 C_2 .....C_n

Thevalueof(C0+C1)(C1+C2)....(Cn1+Cn)is(1)(n+1)nn!C1C2.....Cn(2)(n1)nn!C1C2.....Cn(3)(n)n(n+1)!C1C2.....Cn(4)(n)nn!C1C2.....Cn

Question Number 23769    Answers: 1   Comments: 9

guys , how was kvpy ( SA)?? : tinkutara , physicslover,etc....... i screwd in bio completely. how much you guys are expecting and do you have any idea of cutoff ?

guys,howwaskvpy(SA)??:tinkutara,physicslover,etc.......iscrewdinbiocompletely.howmuchyouguysareexpectinganddoyouhaveanyideaofcutoff?

Question Number 23758    Answers: 1   Comments: 0

solve ∫tan^(−1) x ln (1+x^2 )dx

solvetan1xln(1+x2)dx

Question Number 23752    Answers: 1   Comments: 0

∫_1 ^2 x^3 +1=?

12x3+1=?

Question Number 23679    Answers: 2   Comments: 0

Question Number 23677    Answers: 0   Comments: 0

solve lim_(x→inf+) ∫^(2(√x)) _(2sin(1/x)) ((2t^4 +1)/((t−3)(t^3 +3))) dt

solvelimxinf+2sin1x2x2t4+1(t3)(t3+3)dt

Question Number 23663    Answers: 1   Comments: 3

solve ∫^1_ _(−1) x^2 d(lnx)

solve11x2d(lnx)

Question Number 23592    Answers: 1   Comments: 0

Let ABC be a triangle with AB = AC and ∠BAC = 30°. Let A′ be the reflection of A in the line BC; B′ be the reflection of B in the line CA; C′ be the reflection of C in the line AB. Show that A′, B′, C′ form the vertices of an equilateral triangle.

LetABCbeatrianglewithAB=ACandBAC=30°.LetAbethereflectionofAinthelineBC;BbethereflectionofBinthelineCA;CbethereflectionofCinthelineAB.ShowthatA,B,Cformtheverticesofanequilateraltriangle.

  Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96      Pg 97      Pg 98      Pg 99      Pg 100   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com