Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 105448 by bemath last updated on 29/Jul/20

Given  { ((((4x^2 )/(4x^2 +1)) = y)),((((4y^2 )/(4y^2 +1)) = z)),((((4z^2 )/(4z^2 +1)) = x)) :}   . find  x+y+z ?

Given{4x24x2+1=y4y24y2+1=z4z24z2+1=x.findx+y+z?

Commented by john santu last updated on 29/Jul/20

 (1/x)+(1/y)+(1/z)= ((4x^2 +1)/(4x^2 ))+((4y^2 +1)/(4y^2 ))+((4z^2 +1)/(4z^2 ))  (1/x)+(1/y)+(1/z)= 3+(1/(4x^2 ))+(1/(4y^2 ))+(1/(4z^2 ))  (1/x)+(1/y)+(1/z)=3+((1/(2x)))^2 +((1/(2y)))^2 +((1/(2z)))^2   (1/x)+(1/y)+(1/z)=3+(1/4){((1/x))^2 +((1/y))^2 +((1/z))^2 }   { ((set (1/x)=a, (1/y)=b, (1/z)=c  {: (),() })) :}  ⇔ a+b+c = 3 +(1/4){(a+b+c)^2 −2(ab+ac+bc)}

1x+1y+1z=4x2+14x2+4y2+14y2+4z2+14z21x+1y+1z=3+14x2+14y2+14z21x+1y+1z=3+(12x)2+(12y)2+(12z)21x+1y+1z=3+14{(1x)2+(1y)2+(1z)2}{set1x=a,1y=b,1z=c}a+b+c=3+14{(a+b+c)22(ab+ac+bc)}

Commented by behi83417@gmail.com last updated on 29/Jul/20

x=y=z=0 and:4x^2 −4x+1=0⇒x=y=z=(1/2)  if:x≠y≠z≠0⇒x=(1/(2a)),y=(1/(2b)),z=(1/(2c))⇒   { ((((4.(1/(4a^2 )))/(4.(1/(4a^2 ))+1))=(1/(2b))⇒ { (((1/(1+a^2 ))=(1/(2b)))),(((1/(1+b^2 ))=(1/(2c))⇒)) :})),() :}  ⇒ { ((a^2 +1=2b)),((b^2 +1=2c)),((c^2 +1=2a)) :}⇒(a−1)^2 +(b−1)^2 +(c−1)^2 =0  ⇒a=b=c=1⇒x=y=z=(1/2)

x=y=z=0and:4x24x+1=0x=y=z=12if:xyz0x=12a,y=12b,z=12c{4.14a24.14a2+1=12b{11+a2=12b11+b2=12c{a2+1=2bb2+1=2cc2+1=2a(a1)2+(b1)2+(c1)2=0a=b=c=1x=y=z=12

Answered by ajfour last updated on 29/Jul/20

let   (1/x)=p   ,  (1/y)=q  ,  (1/z)=r  ⇒  (4/(4−p^2 ))=(1/q) ,   (4/(4((q/p))^2 +q^2 ))= (1/r) ,        (4/(4+r^2 ))=(1/p)  ⇒  4−p^2 =4q    ...(i)   4((q/p))^2 +q^2 =4r  ⇒  q^2 ((1/p^2 )+(1/4))=r   ..(ii)         4+r^2 =4p       ...(iii)  ⇒   (1−(p^2 /4))^2 ((1/p^2 )+(1/4))^2 =4(p−1)  ⇒    (16−p^4 )^2 =64×16p^4 (p−1)  ......degree 8

let1x=p,1y=q,1z=r44p2=1q,44(qp)2+q2=1r,44+r2=1p4p2=4q...(i)4(qp)2+q2=4rq2(1p2+14)=r..(ii)4+r2=4p...(iii)(1p24)2(1p2+14)2=4(p1)(16p4)2=64×16p4(p1)......degree8

Answered by bramlex last updated on 29/Jul/20

(1/y) = ((4x^2 +1)/(4x^2 )) →(1/y) = 1+(1/(4x^2 ))  →(1/z) = 1+(1/4)(1+(1/(4x^2 )))^2   →1+(1/(4z^2 )) = (1/x)  →1+(1/4){1+(1/4)(1+(1/(4x^2 )))^2 }= (1/x)  set (1/x) = m   1+(1/4){1+(1/4)(1+(1/4)m^2 )^2 } = m   (5/4)+(1/4)(1+(1/2)m^2 +(1/(16))m^4 )=m  20+4+2m^2 +(1/4)m^4 =16m  m^4 +32m^2 −256m+16×24=0

1y=4x2+14x21y=1+14x21z=1+14(1+14x2)21+14z2=1x1+14{1+14(1+14x2)2}=1xset1x=m1+14{1+14(1+14m2)2}=m54+14(1+12m2+116m4)=m20+4+2m2+14m4=16mm4+32m2256m+16×24=0

Answered by 1549442205PVT last updated on 07/Aug/20

WLOG suppose that x≥y≥z≥0 (1).Then  ((4z^2 )/(4z^2 +1))≥((4x^2 )/(4x^2 +1))≥((4y^2 )/(4y^2 +1))≥0  ⇒(z^2 /(4z^2 +1))≥(x^2 /(4x^2 +1))⇒z^2 (4x^2 +1)≥x^2 (4z^2 +1)  ⇒z^2 ≥x^2 ⇒z≥x≥0(2).From (1) and(2)  we get x=y=z.Hence  ((4x^2 )/(4x^2 +1))=x⇔4x^3 −4x^2 +x=0  ⇔x(4x^2 −4x+1)=0.⇔x(2x−1)^2 =0  ⇔x∈{0;(1/2)}  Thus,the roots of the given system are:  {(0;0);((1/2);(1/2))}

WLOGsupposethatxyz0(1).Then4z24z2+14x24x2+14y24y2+10z24z2+1x24x2+1z2(4x2+1)x2(4z2+1)z2x2zx0(2).From(1)and(2)wegetx=y=z.Hence4x24x2+1=x4x34x2+x=0x(4x24x+1)=0.x(2x1)2=0x{0;12}Thus,therootsofthegivensystemare:{(0;0);(12;12)}

Commented by behi83417@gmail.com last updated on 31/Jul/20

sir 154! there is a typo in line#5 from end.

You can't use 'macro parameter character #' in math mode

Commented by 1549442205PVT last updated on 01/Aug/20

Thank Sir.I understanded and shall   correct it

ThankSir.Iunderstandedandshallcorrectit

Terms of Service

Privacy Policy

Contact: info@tinkutara.com