All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 119956 by bobhans last updated on 28/Oct/20
Givena=1+3+32+33+34+...+3100Findtheremainderofdividingthenumberby5.(a)2(b)0(c)4(d)1(e)3
Answered by talminator2856791 last updated on 08/Sep/21
a=∑24k=034k(1+32)+∑24k=034k+1(1+32)+3100∑24k=034k(1+32)=10∑24k=034k∑24k=034k(1+32)=10∑24k=034k+1→5∣10∑24k=034k,5∣10∑24k=034k+1→5∣1+3+32+.....+399⇒5∣3(1+3+32+.....+399)=5∣3+32+33+.....+3100⇒1+3+32+......+3100≡1(mod5)answer:d
Answered by TANMAY PANACEA last updated on 28/Oct/20
S=3101−13−1=12(3101−1)31=332=933=2734=8135=24336=729solastdigitrepets(3→9→7→1)1014→25cycleof(3→9→7→1)+plus1lastdigitof3101is3(nowlastdigit3)−1solastdigitbecomes=2whendevidedby2lastdigitbecomes13101−12=lastdigit=13101−12=(5×evenmultiple)+lastdigit=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com