Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205988 by cortano12 last updated on 04/Apr/24

  Given f(x+1)=2^(f(x)) .f(1)    and f(1)= 16     then f(2016)=?

Givenf(x+1)=2f(x).f(1)andf(1)=16thenf(2016)=?

Answered by Berbere last updated on 04/Apr/24

f(2)=2^(20) =2^2^4    f(3)=2^(2^(20) +4)   f(4)=2^(2^(2^(20) +4) +4)   g(n)=2^n   h(n)=n+4;  f(3)=gohog(20)  f(4)=gohogohog(20);∀n≥3  f(n)=goh........ohog(20),(n−1)g appair   proof   for n=3  f(3)=gohog(20) True  f(n)=goho.....og(20)  f(n+1)=2^(goho....og(20)+4)   goh....og(20)+4=h(goh....og(20))  f(n+1)=2^(hogoh.....g(20)) =goh(f(n))  ⇒f(n+1)=gohogoh.....og(20);g appair n=Times  f(2016)=goh....og(20),g appair 2015 times

f(2)=220=224f(3)=2220+4f(4)=22220+4+4g(n)=2nh(n)=n+4;f(3)=gohog(20)f(4)=gohogohog(20);n3f(n)=goh........ohog(20),(n1)gappairproofforn=3f(3)=gohog(20)Truef(n)=goho.....og(20)f(n+1)=2goho....og(20)+4goh....og(20)+4=h(goh....og(20))f(n+1)=2hogoh.....g(20)=goh(f(n))f(n+1)=gohogoh.....og(20);gappairn=Timesf(2016)=goh....og(20),gappair2015times

Terms of Service

Privacy Policy

Contact: info@tinkutara.com