All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 154133 by qaz last updated on 14/Sep/21
Givenf(x)=x+1+x23+x−1+x23Findf−1(x)=?
Answered by EDWIN88 last updated on 14/Sep/21
⇔y−x+1+x23−x−1+x23=0⇒y3−(x+1+x2)−(x−1+x2)=3y(x+1+x2)(x−1+x2)3⇒y3−2x=3yx2−(1+x2)3⇒y3−2x=−3y⇒2x=y3+3y⇒x=12(y3+3y)⇒f−1(x)=12(x3+3x)
Answered by mr W last updated on 14/Sep/21
f(x)=y=x+1+x23+x−1+x23y=−(−x)+13+(−x)23−(−x)+13+(−x)23thatmeansyistherootofcubiceqn.withrespecttot:t3+3t−2x=0i.e.y3+3y−2x=0⇒x=y(y2+3)2⇒f−1(x)=x(x2+3)2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com