Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 7748 by Tawakalitu. last updated on 13/Sep/16

Given that Z and H are complex number.   obtain the real and imaginary of Z^H

GiventhatZandHarecomplexnumber.obtaintherealandimaginaryofZH

Answered by Yozzia last updated on 13/Sep/16

Let Z=re^(iθ) , H=c+di  (r,θ,c,d∈R, r>0, i=(√(−1))).  Z^H =(re^(iθ) )^(c+di) =r^(c+di) e^(iθ(c+di))   Z^H =e^((c+di)lnr) e^(cθi−dθ)               {∵ r=e^(lnr) }  Z^H =e^(clnr) e^(idlnr) e^(−θd) e^(ciθ)   Z^H =e^(clnr−θd) e^(idlnr+ciθ)   Z^H =e^(clnr−θd) e^(i(dlnr+cθ))   By Euler′s formula,  Z^H =e^(clnr−θd) {cos(dlnr+cθ)+isin(dlnr+cθ)}  ⇒Re(Z^H )=e^(clnr−dθ) cos(dlnr+cθ)  & Im(Z^H )=e^(clnr−dθ) sin(dlnr+cθ)  θ=argument of Z, r=modulus of Z.  Also, arg(Z^H )=dlnr+cθ   & ∣Z^H ∣=e^(clnr−dθ) =e^(−dθ) e^(lnr^c ) =r^c e^(−dθ)

LetZ=reiθ,H=c+di(r,θ,c,dR,r>0,i=1).ZH=(reiθ)c+di=rc+dieiθ(c+di)ZH=e(c+di)lnrecθidθ{r=elnr}ZH=eclnreidlnreθdeciθZH=eclnrθdeidlnr+ciθZH=eclnrθdei(dlnr+cθ)ByEulersformula,ZH=eclnrθd{cos(dlnr+cθ)+isin(dlnr+cθ)}Re(ZH)=eclnrdθcos(dlnr+cθ)&Im(ZH)=eclnrdθsin(dlnr+cθ)θ=argumentofZ,r=modulusofZ.Also,arg(ZH)=dlnr+cθ&ZH∣=eclnrdθ=edθelnrc=rcedθ

Commented by Tawakalitu. last updated on 13/Sep/16

Wow, i really appreciate sir. thank you sir.

Wow,ireallyappreciatesir.thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com