Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64762 by Lontum Hans-Sandys last updated on 21/Jul/19

Given that g(x)=(2/((1+x)(1+3x^2 ))  a) express g(x) in partial fractions.  b) evaluate ∫_0 ^1 g((x) dx.

Giventhatg(x)=2(1+x)(1+3x2a)expressg(x)inpartialfractions.b)evaluate01g((x)dx.

Commented by mathmax by abdo last updated on 21/Jul/19

1)g(x) =(a/(x+1)) +((bx+c)/(3x^2  +1))  a =lim_(x→−1) (x+1)g(x) =(1/2)  lim_(x→+∞) xg(x) =0 =a+(b/3) ⇒3a+b =0 ⇒b=−(3/2) ⇒  g(x) =(1/(2(x+1))) −(1/2) ((3x−2c)/(3x^2  +1))  g(0) =2 =(1/2) +c ⇒c =2−(1/2) =(3/2) ⇒g(x) =(1/(2(x+1)))−(1/2)((3x−3)/(3x^2  +1))  b) ∫_0 ^1 g(x)dx =(1/2) ∫_0 ^1  (dx/(x+1)) −(1/2) ∫_0 ^1   ((x−1)/((x^2  +(1/3))))dx  ∫_0 ^1  (dx/(x+1)) =[ln∣x+1∣]_0 ^1  =ln(2)  ∫_0 ^1   ((x−1)/(x^2  +(1/3)))dx =(1/2) ∫_0 ^1  ((2x)/(x^2  +(1/3)))dx −∫_0 ^1  (dx/(x^2  +(1/3)))  =[ln(x^2  +(1/3))]_0 ^1  −∫_0 ^1   (dx/(x^2  +(1/3))) =ln((4/3))−ln((1/3))−∫_0 ^1  (dx/(x^2  +(1/3)))  =2ln(2)−∫_0 ^1  (dx/(x^2  +(1/3)))  but we have ∫_0 ^1  (dx/(x^2  +(1/3))) =_(x =(t/(√3)))   =∫_0 ^(√3)    (dt/(((√3)/3)(1+t^2 ))) =(√3)[ arctan(t)]_0 ^(√3)  =(√3) arctan((√3))=((π(√3))/3) ⇒  ∫_0 ^1 g(x)dx =((ln(2))/2) −(1/2){2ln(2)−((π(√3))/3)} =−((ln(2))/2) +((π(√3))/6)

1)g(x)=ax+1+bx+c3x2+1a=limx1(x+1)g(x)=12limx+xg(x)=0=a+b33a+b=0b=32g(x)=12(x+1)123x2c3x2+1g(0)=2=12+cc=212=32g(x)=12(x+1)123x33x2+1b)01g(x)dx=1201dxx+11201x1(x2+13)dx01dxx+1=[lnx+1]01=ln(2)01x1x2+13dx=12012xx2+13dx01dxx2+13=[ln(x2+13)]0101dxx2+13=ln(43)ln(13)01dxx2+13=2ln(2)01dxx2+13butwehave01dxx2+13=x=t3=03dt33(1+t2)=3[arctan(t)]03=3arctan(3)=π3301g(x)dx=ln(2)212{2ln(2)π33}=ln(2)2+π36

Answered by Tanmay chaudhury last updated on 21/Jul/19

(2/((1+x)(1+3x^2 )))=(a/(1+x))+((bx+c)/(1+3x^2 ))  2=a(1+3x^2 )+(1+x)(bx+c)  2=a+3ax^2 +bx+c+bx^2 +cx  2=x^2 (3a+b)+x(b+c)+(a+c)  3a+b=0  b+c=0  so 3a−c=0  c=3a  a+c=2  3a+a=2→a=(2/4)=(1/2)  and  c=(3/2)  b=−c  b=((−3)/2)  hence (2/((1+x)((1+3x^2 )))=((1/2)/(x+1))+((((−3x)/2)+(3/2))/(1+3x^2 ))  ∫(2/((1+x)(1+3x^2 )))=∫((1/2)/(x+1))dx+(((−3)/2))∫((xdx)/(1+3x^2 ))+(3/2)∫(dx/(1+3x^2 ))  =(1/2)∫(dx/(x+1))+((−3)/(2×6))∫((6x)/(1+3x^2 ))dx+(1/2)∫(dx/(x^2 +(1/3)))  =(1/2)∫(dx/(x+1))−(1/4)∫((d(1+3x^2 ))/(1+3x^2 ))+(1/2)∫(dx/(x^2 +((√(1/3)) )^2 ))  =(1/2)ln(x+1)−(1/4)ln(1+3x^2 )+(1/2)×(1/(1/(√3)))tan^(−1) ((x/(1/(√3))))  =(1/2)ln(x+1)−(1/4)ln(1+3x^2 )+((√3)/2)tan^(−1) (x(√3) )  so ∫_0 ^1 g(x)dx  =∣(1/2)ln(x+1)−(1/4)ln(1+3x^2 )+((√3)/2)tan^(−1) (x(√3) )∣_(0=) ^1   =(1/2)ln2−(1/4)ln(4)+((√3)/2)×(π/3)  =(π/(2(√3)))

2(1+x)(1+3x2)=a1+x+bx+c1+3x22=a(1+3x2)+(1+x)(bx+c)2=a+3ax2+bx+c+bx2+cx2=x2(3a+b)+x(b+c)+(a+c)3a+b=0b+c=0so3ac=0c=3aa+c=23a+a=2a=24=12andc=32b=cb=32hence2(1+x)((1+3x2)=12x+1+3x2+321+3x22(1+x)(1+3x2)=12x+1dx+(32)xdx1+3x2+32dx1+3x2=12dxx+1+32×66x1+3x2dx+12dxx2+13=12dxx+114d(1+3x2)1+3x2+12dxx2+(13)2=12ln(x+1)14ln(1+3x2)+12×113tan1(x13)=12ln(x+1)14ln(1+3x2)+32tan1(x3)so01g(x)dx=∣12ln(x+1)14ln(1+3x2)+32tan1(x3)0=1=12ln214ln(4)+32×π3=π23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com