All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64762 by Lontum Hans-Sandys last updated on 21/Jul/19
Giventhatg(x)=2(1+x)(1+3x2a)expressg(x)inpartialfractions.b)evaluate∫01g((x)dx.
Commented by mathmax by abdo last updated on 21/Jul/19
1)g(x)=ax+1+bx+c3x2+1a=limx→−1(x+1)g(x)=12limx→+∞xg(x)=0=a+b3⇒3a+b=0⇒b=−32⇒g(x)=12(x+1)−123x−2c3x2+1g(0)=2=12+c⇒c=2−12=32⇒g(x)=12(x+1)−123x−33x2+1b)∫01g(x)dx=12∫01dxx+1−12∫01x−1(x2+13)dx∫01dxx+1=[ln∣x+1∣]01=ln(2)∫01x−1x2+13dx=12∫012xx2+13dx−∫01dxx2+13=[ln(x2+13)]01−∫01dxx2+13=ln(43)−ln(13)−∫01dxx2+13=2ln(2)−∫01dxx2+13butwehave∫01dxx2+13=x=t3=∫03dt33(1+t2)=3[arctan(t)]03=3arctan(3)=π33⇒∫01g(x)dx=ln(2)2−12{2ln(2)−π33}=−ln(2)2+π36
Answered by Tanmay chaudhury last updated on 21/Jul/19
2(1+x)(1+3x2)=a1+x+bx+c1+3x22=a(1+3x2)+(1+x)(bx+c)2=a+3ax2+bx+c+bx2+cx2=x2(3a+b)+x(b+c)+(a+c)3a+b=0b+c=0so3a−c=0c=3aa+c=23a+a=2→a=24=12andc=32b=−cb=−32hence2(1+x)((1+3x2)=12x+1+−3x2+321+3x2∫2(1+x)(1+3x2)=∫12x+1dx+(−32)∫xdx1+3x2+32∫dx1+3x2=12∫dxx+1+−32×6∫6x1+3x2dx+12∫dxx2+13=12∫dxx+1−14∫d(1+3x2)1+3x2+12∫dxx2+(13)2=12ln(x+1)−14ln(1+3x2)+12×113tan−1(x13)=12ln(x+1)−14ln(1+3x2)+32tan−1(x3)so∫01g(x)dx=∣12ln(x+1)−14ln(1+3x2)+32tan−1(x3)∣0=1=12ln2−14ln(4)+32×π3=π23
Terms of Service
Privacy Policy
Contact: info@tinkutara.com