All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 156426 by ZiYangLee last updated on 11/Oct/21
Giventhattanαandtanβaretherootsoftheequationx2+3ax+4a+1=0,wherea>1andα,β∈(−π2,π2).Evaluatetan(α+β2).
Answered by mr W last updated on 11/Oct/21
tanα+tanβ=−3atanαtanβ=4a+1tan(α+β)=−3a+4a+11+3a(4a+1)=a+112a2+3a+1=2tanα+β21−tan2α+β2=2t1−t22t1−t2=a+112a2+3a+1(a+1)t2+2(12a2+3a+1)t−(a+1)=0t=tanα+β2=−(12a2+3a+1)±(12a2+3a+1)2+(a+1)2a+1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com