Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 158259 by cortano last updated on 01/Nov/21

Given x,y∈R^+  and ((x/5)+(y/3))((5/x)+(3/y))=139.   If maximum and minimum   of ((x+y)/( (√(xy)) )) is M and n respectively,  then what the value of 3M−4n.

Givenx,yR+and(x5+y3)(5x+3y)=139.Ifmaximumandminimumofx+yxyisMandnrespectively,thenwhatthevalueof3M4n.

Commented by tounghoungko last updated on 01/Nov/21

⇔((x/5)+(y/3))((5/x)+(3/y))=139  ⇔ ((3x)/(5y))+((5y)/(3x))=137 → { (((x/y)=a)),(((y/x)=(1/a))) :}  ⇔ ((3a)/5)+(5/(3a))=137 ...(i)  ⇒((x+y)/( (√(xy)))) = (√(x/y))+(√(y/x)) = (√a)+(1/( (√a)))  ⇒from (i) ⇒9a^2 −2055a+25=0  by Vietha′s rule  { ((a_1 +a_2 =((2055)/9))),((a_1 ×a_2 =((25)/9))) :}  let  { ((max=M=(√a_1 )+(1/( (√a_1 ))))),((min=n=(√a_2 )+(1/( (√a_2 ))) )) :}  (3M−4n)^2 =(3(√a_1 )+(3/( (√a_1 )))−4(√a_2 )−(4/( (√a_2 ))))^2   =(((3a_1 +3)/( (√a_1 )))−4(((a_2 +1)/( (√a_2 )))))^2   =(((3a_1 (√a_2 )+3(√a_2 )−4a_2 (√a_1 )−4(√a_1 ))/( (√(a_1 a_2 )))))^2   =((((√(a_1 a_2 ))(3(√a_1 )−4(√a_2 ))+3(√a_2 )−4(√a_1 ))^2 )/((25)/9))  =(9/(25))(a_1 a_2 (9a_1 +16a_2 −12(√(a_1 a_2 )))+9a_2 +16a_1 −12(√(a_1 a_2 ))+2(√(a_1 a_2 ))(9(√(a_1 a_2 ))−12a_1 −12a_2 +16(√(a_1 a_2 )))

(x5+y3)(5x+3y)=1393x5y+5y3x=137{xy=ayx=1a3a5+53a=137...(i)x+yxy=xy+yx=a+1afrom(i)9a22055a+25=0byViethasrule{a1+a2=20559a1×a2=259let{max=M=a1+1a1min=n=a2+1a2(3M4n)2=(3a1+3a14a24a2)2=(3a1+3a14(a2+1a2))2=(3a1a2+3a24a2a14a1a1a2)2=(a1a2(3a14a2)+3a24a1)2259=925(a1a2(9a1+16a212a1a2)+9a2+16a112a1a2+2a1a2(9a1a212a112a2+16a1a2)

Answered by mr W last updated on 01/Nov/21

((x/5)+(y/3))((5/x)+(3/y))=139  (5/3)((y/x))+(3/5)((x/y))+2=139  let t=(y/x)  25t+(9/t)=137×15  25t^2 −2055t+9=0  t=((3(137±3(√(2085))))/(10))  P=(((x+y)/( (√(xy)))))^2 =(x/y)+(y/x)+2=t+(1/t)+2  P_1 =((3(137+3(√(2085))))/(10))+((10)/(3(137+3(√(2085)))))+2  =((2359−24(√(2085)))/(15))=n^2   P_2 =((3(137−3(√(2085))))/(10))+((10)/(3(137−3(√(2085)))))+2  =((2359+24(√(2085)))/(15))=M^2   3M−4n=3(√((2359+24(√(2085)))/(15)))−4(√((2359−24(√(2085)))/(15)))≈8.962

(x5+y3)(5x+3y)=13953(yx)+35(xy)+2=139lett=yx25t+9t=137×1525t22055t+9=0t=3(137±32085)10P=(x+yxy)2=xy+yx+2=t+1t+2P1=3(137+32085)10+103(137+32085)+2=235924208515=n2P2=3(13732085)10+103(13732085)+2=2359+24208515=M23M4n=32359+2420851542359242085158.962

Terms of Service

Privacy Policy

Contact: info@tinkutara.com