All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 158259 by cortano last updated on 01/Nov/21
Givenx,y∈R+and(x5+y3)(5x+3y)=139.Ifmaximumandminimumofx+yxyisMandnrespectively,thenwhatthevalueof3M−4n.
Commented by tounghoungko last updated on 01/Nov/21
⇔(x5+y3)(5x+3y)=139⇔3x5y+5y3x=137→{xy=ayx=1a⇔3a5+53a=137...(i)⇒x+yxy=xy+yx=a+1a⇒from(i)⇒9a2−2055a+25=0byVietha′srule{a1+a2=20559a1×a2=259let{max=M=a1+1a1min=n=a2+1a2(3M−4n)2=(3a1+3a1−4a2−4a2)2=(3a1+3a1−4(a2+1a2))2=(3a1a2+3a2−4a2a1−4a1a1a2)2=(a1a2(3a1−4a2)+3a2−4a1)2259=925(a1a2(9a1+16a2−12a1a2)+9a2+16a1−12a1a2+2a1a2(9a1a2−12a1−12a2+16a1a2)
Answered by mr W last updated on 01/Nov/21
(x5+y3)(5x+3y)=13953(yx)+35(xy)+2=139lett=yx25t+9t=137×1525t2−2055t+9=0t=3(137±32085)10P=(x+yxy)2=xy+yx+2=t+1t+2P1=3(137+32085)10+103(137+32085)+2=2359−24208515=n2P2=3(137−32085)10+103(137−32085)+2=2359+24208515=M23M−4n=32359+24208515−42359−24208515≈8.962
Terms of Service
Privacy Policy
Contact: info@tinkutara.com