Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 218400 by SdC355 last updated on 09/Apr/25

Hard problem.....   prove.   for all α∈Z  α^(37) ≡α Mod(1729)  pls help :(

Hardproblem.....prove.forallαZα37αMod(1729)plshelp:(

Answered by Nicholas666 last updated on 09/Apr/25

Answered by Nicholas666 last updated on 09/Apr/25

Answered by vnm last updated on 09/Apr/25

1729=7∙13∙19  using Fermat′s little theorem  α may be represented as b∙7^k 13^l 19^m , gcd(b,1729)=1, k,l,m≥0  b^(37) −b=b(b^(36) −1)  b^(36) −1=(b^6 −1)p=(b^(7−1) −1)p=7p_1   b^(36) −1=(b^(12) −1)q=(b^(13−1) −1)q=13q_1   b^(36) −1=(b^(18) −1)r=(b^(19−1) −1)r=19r_1   b^(36) −1 is divisible by 7,13,19, so it is divisible by 1729  b^(37) =b(b^(36) −1)+b=1729s+b  (7^k )^(37) −7^k =7^k ((7^k )^(36) −1)  (7^k )^(36) −1=((7^k )^(13−1) −1)t=13t_1   (7^k )^(36) −1=((7^k )^(19−1) −1)u=19u_1   (7^k )^(36) −1 is divisible by 13∙19  (7^k )^(37) =7^k ((7^k )^(36) −1)+7^k =1729v+7^k   similarly  (13^l )^(37) =1729w+13^l   (19^m )^(37) =1729x+19^m   α^(37) =b^(37) (7^k )^(37) (13^l )^(37) (19^m )^(37) =  1729y+b7^k 13^l 19^m =1729y+α  α^(37) ≡α(mod 1729)

1729=71319usingFermatslittletheoremαmayberepresentedasb7k13l19m,gcd(b,1729)=1,k,l,m0b37b=b(b361)b361=(b61)p=(b711)p=7p1b361=(b121)q=(b1311)q=13q1b361=(b181)r=(b1911)r=19r1b361isdivisibleby7,13,19,soitisdivisibleby1729b37=b(b361)+b=1729s+b(7k)377k=7k((7k)361)(7k)361=((7k)1311)t=13t1(7k)361=((7k)1911)u=19u1(7k)361isdivisibleby1319(7k)37=7k((7k)361)+7k=1729v+7ksimilarly(13l)37=1729w+13l(19m)37=1729x+19mα37=b37(7k)37(13l)37(19m)37=1729y+b7k13l19m=1729y+αα37α(mod1729)

Answered by MrGaster last updated on 10/Apr/25

Z∈α=α mod 1729⇒α^(37) ≡α mod 7 ∩ α^(37) ≡α mod 13∩ α^(37) =α mod 19  1729=7×13×19(Prime factorization)  ∀p∈{7,13,19},α^(p−1) ≡1 mod p⇒α^(37) ≡α^(37 mod ( p−1)) mod p  37≡1 mod 6⇒α^(37) ≡α mod 7  37≡1 mod 12⇒α^(37) ≡α mod 13  37≡1 mod 18⇒α^(37) ≡α mod 19  α^(37) ≡α mod 7∩α^(37) ≡α mod 13 ∩α^(37) =α mod 19⇒α^(37) ≡α mod lcm(7,13,19)  lcm(7,13,19)=7×13×19=1729⇒α^(37) ≡α Mod(1729)

Zα=αmod1729α37αmod7α37αmod13α37=αmod191729=7×13×19(Primefactorization)p{7,13,19},αp11modpα37α37mod(p1)modp371mod6α37αmod7371mod12α37αmod13371mod18α37αmod19α37αmod7α37αmod13α37=αmod19α37αmodlcm(7,13,19)lcm(7,13,19)=7×13×19=1729α37αMod(1729)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com