All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116806 by Backer last updated on 07/Oct/20
HiProvethat:∫−∞+∞−e−x2dx=πThanksbeforehand
Answered by Bird last updated on 07/Oct/20
letAξ=∫∫]−ξ,ξ[2e−x2−y2dxdywehsvelimξ→+∞Aξ=(∫−∞∞e−x2dx)2letusethediffeomorphism{x=rcosθy=rsinθwehave−ξ⩽x⩽ξand−ξ⩽y⩽ξ⇒0⩽x2+y2⩽2ξ2⇒0⩽r⩽ξ2⇒Aξ=∫0ξ2re−r2dr∫−ππdθ=2π[−12e−r2]0ξ2=π(1−e−2ξ2)⇒limξ→+∞Aξ=π=(∫−∞+∞e−x2dx)2but∫−∞∞e−x2dx>0⇒∫−∞+∞e−x2dx=π
Answered by bobhans last updated on 07/Oct/20
I=∫∞−∞e−x2dx⇒I2=∫∞−∞∫∞−∞e−x2−y2dxdyI2=∫∞0∫2π0re−r2dθdr=∫∞0∣(re−r2(θ))∣02π)drI2=2π∫∞0re−r2dr=π∫∞0e−r2d(r2)I2=−π∣(e−r2)∣0∞=−π(0−1)=πHenceI=π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com