Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55520 by Rdk96 last updated on 26/Feb/19

How can solve ∫(√)tan(x)dx ?

Howcansolvetan(x)dx?

Commented by maxmathsup by imad last updated on 26/Feb/19

let A =∫ (√(tanx))dx  changement (√(tanx))=t give tanx =t^2  ⇒x =arctan(t^2 ) ⇒  A =∫ t ((2t)/(1+t^4 )) dt =2 ∫  (t^2 /(t^4 +1))dt  let decompose F(t)=(t^2 /(t^4  +1)) ⇒  F(t)=(t^2 /((t^2  −(√2)t +1)(t^2  +(√2)t +1))) =((at +b)/(t^2 −(√2)t +1)) +((ct +d)/(t^2  +(√2)t +1))  F(−t)=F(t) ⇒((−at +b)/(t^2 +(√2)t +1))+((−ct +d)/(t^2 −(√2)t +1)) =F(t) ⇒c=−a and d=b ⇒  F(t)=((at +b)/(t^2 −(√2)t+1)) +((−at +b)/(t^2  +(√2)t +1))  F(0) =0 =2b ⇒b=0 ⇒F(t)=((at)/(t^2 −(√2)t +1)) −((at)/(t^2 +(√2)t +1))  F(1) =(1/((2−(√2))(2+(√2)))) = (a/(2−(√2))) −(a/(2+(√2))) ⇒(1/2) =(((2+(√2))a−(2−(√2))a)/2) ⇒  2(√2)a =1 ⇒a =(1/(2(√2))) ⇒F(t)=(1/(2(√2))){ (t/(t^2 −(√2)t +1)) −(t/(t^2  +(√2)t +1))} ⇒  A =(1/(√2)){ ∫   ((tdt)/(t^2 −(√2)t +1)) −∫   ((tdt)/(t^2 +(√2)t +1))} +c  but   ∫   ((tdt)/(t^2 −(√2)t +1)) =(1/2) ∫  ((2t−(√2)+(√2))/(t^2 −(√2)t +1)) dt =(1/2)ln(t^2 −(√2)t +1)+(1/(√2))∫  (dt/(t^2 −(√2)t +1))  ∫  (dt/(t^2 −(√2)t +1)) =∫  (dt/((t−((√2)/2))^2  +(1/2))) =_(t−(1/(√2))=(u/(√2)))     ∫     (du/((√2)(1/2)(1+u^2 )))  =(√2)arctan(t(√2)−1) ⇒∫  ((tdt)/(t^2 −(√2)t +1)) =(1/2)ln(t^2 −(√2)t +1) +arctan(t(√2)−1)  also we get  ∫  ((tdt)/(t^2 +(√2)t +1)) =(1/2)ln(t^2  +(√2)t +1) +arctan(t(√2)+1) ⇒  (√2)A =(1/2)ln(t^2 −(√2)t +1)+arctan(t(√2)−1)−(1/2)ln(t^2  +(√2)t +1)−arctan(t(√2)+1) +c  =ln(√((t^2 −(√2)t+1)/(t^2  +(√2)t +1)))  +arctan(t(√2)−1)−arctan(t(√2)+1) +c ⇒  A =(1/(√2)){ ln((√((tanx−(√(2tanx))+1)/(tanx+(√(2tanx))+1)))) +arctan((√(2tanx))−1)−arctan((√(2tanx)) +1)} +c

letA=tanxdxchangementtanx=tgivetanx=t2x=arctan(t2)A=t2t1+t4dt=2t2t4+1dtletdecomposeF(t)=t2t4+1F(t)=t2(t22t+1)(t2+2t+1)=at+bt22t+1+ct+dt2+2t+1F(t)=F(t)at+bt2+2t+1+ct+dt22t+1=F(t)c=aandd=bF(t)=at+bt22t+1+at+bt2+2t+1F(0)=0=2bb=0F(t)=att22t+1att2+2t+1F(1)=1(22)(2+2)=a22a2+212=(2+2)a(22)a222a=1a=122F(t)=122{tt22t+1tt2+2t+1}A=12{tdtt22t+1tdtt2+2t+1}+cbuttdtt22t+1=122t2+2t22t+1dt=12ln(t22t+1)+12dtt22t+1dtt22t+1=dt(t22)2+12=t12=u2du212(1+u2)=2arctan(t21)tdtt22t+1=12ln(t22t+1)+arctan(t21)alsowegettdtt2+2t+1=12ln(t2+2t+1)+arctan(t2+1)2A=12ln(t22t+1)+arctan(t21)12ln(t2+2t+1)arctan(t2+1)+c=lnt22t+1t2+2t+1+arctan(t21)arctan(t2+1)+cA=12{ln(tanx2tanx+1tanx+2tanx+1)+arctan(2tanx1)arctan(2tanx+1)}+c

Commented by maxmathsup by imad last updated on 26/Feb/19

∫  ((tdt)/(t^2 +(√2)t +1)) =_(t=−u)    ∫  (((−u)(−du))/(u^2 −(√2)u +1)) =∫ ((udu)/(u^2 −(√2)u +1))  =(1/2)ln(u^2 −(√2)u +1) +arctan(u(√2)−1)  =(1/2)ln(t^2 +(√2)t +1)−arctan(t(√2)+1) ⇒  (√2)A =(1/2)ln(t^2 −(√2)t +1)+arctan(t(√2)−1)−(1/2)ln(t^2  +(√2)t +1) +arctan(t(√2)+1)  A =(1/(√2)){ ln((√((tanx−2(√(tanx))+1)/(tanx +(√(2tanx))+1)))) +arctan(t(√2)−1) +arctan(t(√2)+1)} +c .

tdtt2+2t+1=t=u(u)(du)u22u+1=uduu22u+1=12ln(u22u+1)+arctan(u21)=12ln(t2+2t+1)arctan(t2+1)2A=12ln(t22t+1)+arctan(t21)12ln(t2+2t+1)+arctan(t2+1)A=12{ln(tanx2tanx+1tanx+2tanx+1)+arctan(t21)+arctan(t2+1)}+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Feb/19

t^2 =tanx   2tdt=sec^2 xdx  ((2tdt)/(1+t^4 ))=dx  ∫t×((2tdt)/(1+t^4 ))  ∫((2t^2 )/(1+t^4 ))dt  ∫((2dt)/(t^2 +(1/t^2 )))  ∫((1−(1/t^2 )+1+(1/t^2 ))/(t^2 +(1/t^2 )))dt←main step  ∫((1−(1/t^2 ))/((t+(1/t))^2 −2))dt+∫((1+(1/t^2 ))/((t−(1/t))^2 +2))dt  ∫((d(t+(1/t)))/((t+(1/t))^2 −2))+∫((d(t−(1/t)))/((t−(1/t))^2 +2))  now use formula ∫(dx/(x^2 −a^2 ))=(1/(2a))ln(((x−a)/(x+a)))+c  and∫(dx/(x^2 +a^2 ))=(1/a)tan^(−1) ((x/a))+c_1   (1/(2(√2)))ln(((t+(1/t)−(√2))/(t+(1/t)+(√2))))+(1/(√2))tan^(−1) (((t−(1/t))/(√2)))+c  (1/(2(√2)))ln((((√(tanx)) +(1/((√(tanx)) ))−(√2))/((√(tanx)) +(1/((√(tanx)) ))+(√2))))+(1/(√2))tan^(−1) ((((√(tanx)) −(1/((√(tanx)) )))/(√2)))+c  pls check...

t2=tanx2tdt=sec2xdx2tdt1+t4=dxt×2tdt1+t42t21+t4dt2dtt2+1t211t2+1+1t2t2+1t2dtmainstep11t2(t+1t)22dt+1+1t2(t1t)2+2dtd(t+1t)(t+1t)22+d(t1t)(t1t)2+2nowuseformuladxx2a2=12aln(xax+a)+canddxx2+a2=1atan1(xa)+c1122ln(t+1t2t+1t+2)+12tan1(t1t2)+c122ln(tanx+1tanx2tanx+1tanx+2)+12tan1(tanx1tanx2)+cplscheck...

Commented by Rdk96 last updated on 26/Feb/19

it is possible to multiply the differential   with the equation??

itispossibletomultiplythedifferentialwiththeequation??

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Feb/19

yes...  ∫(x/(1+x^2 ))dx→(1/2)∫((d(1+x^2 ))/(1+x^2 ))→(1/2)ln(1+x^2 )+c

yes...x1+x2dx12d(1+x2)1+x212ln(1+x2)+c

Commented by Rdk96 last updated on 26/Feb/19

correct.

correct.

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Feb/19

or method...  p=∫(√(tanx)) +(√(cotx)) dx  q=(√(tanx)) −(√(cotx)) dx  ∫(√(tanx)) dx=((p+q)/2)  p=∫(√((sinx)/(cosx))) +(√((cosx)/(sinx))) dx  p=∫((sinx+cosx)/(√(sinxcosx)))dx  p=(√2)∫((d(sinx−cosx))/(√(1−1+2sinxcosx)))dx  =(√2) ∫((d(sinx−cosx))/((√(1−(sinx−cosx)^2 )) ))  =(√2) sin^(−1) (sinx−cosx) +c_1   q=∫((√((sinx)/(cosx))) −(√((cosx)/(sinx))) ) dx  q=∫((sinx−cosx)/(√(sinxcosx)))dx→−∫((cosx−sinx)/(√(sinxcosx)))dx  q=(−(√2) )∫((d(sinx+cosx))/(√(1+2sinxcosx−1)))  =(−(√2) )∫((d(sinx+cosx))/(√((sinx+cosx)^2 −1)))  =(−(√2) )ln{(sinx+cosx)+(√((sinx+cosx)^2 −1)) }    so ∫(√(tanx)) dx  ((√2)/2)[sin^(−1) (sinx−cosx)−ln{(sinx+cosx)+(√((sinx+cosx)^2 −1)) }]+c  pls check...

ormethod...p=tanx+cotxdxq=tanxcotxdxtanxdx=p+q2p=sinxcosx+cosxsinxdxp=sinx+cosxsinxcosxdxp=2d(sinxcosx)11+2sinxcosxdx=2d(sinxcosx)1(sinxcosx)2=2sin1(sinxcosx)+c1q=(sinxcosxcosxsinx)dxq=sinxcosxsinxcosxdxcosxsinxsinxcosxdxq=(2)d(sinx+cosx)1+2sinxcosx1=(2)d(sinx+cosx)(sinx+cosx)21=(2)ln{(sinx+cosx)+(sinx+cosx)21}sotanxdx22[sin1(sinxcosx)ln{(sinx+cosx)+(sinx+cosx)21}]+cplscheck...

Answered by MJS last updated on 26/Feb/19

∫(√(tan x))dx=       [t=(√(tan x)) → dx=2cos^2  x (√(tan x))dt=((2tdt)/(t^4 +1))]  =2∫(t^2 /(t^4 +1))dt=2∫(t^2 /((t^2 −(√2)t+1)(t^2 +(√2)t+1)))dt=  =2∫((((√2)t)/(4(t^2 −(√2)t+1)))−(((√2)t)/(4(t^2 +(√2)t+1))))dt=  =(1/2)∫((((√2)t−1)/(t^2 −(√2)t+1))+(1/(t^2 −(√2)t+1))−(((√2)t+1)/(t^2 +(√2)t+1))+(1/(t^2 +(√2)t+1)))dt=  =((√2)/4)∫(((2t−(√2))/(t^2 −(√2)t+1))−((2t+(√2))/(t^2 +(√2)t+1)))dt+(1/2)∫((1/(t^2 −(√2)t+1))+(1/(t^2 +(√2)t+1)))dt=  =((√2)/4)(ln (t^2 −(√2)t+1) −ln (t^2 +(√2)t+1))+((√2)/2)(arctan ((√2)t−1) +arctan ((√2)t+1))=  =((√2)/4)(ln ∣((tan x −(√(2tan x))+1)/(tan x +(√(2tan x))+1))∣ +2(arctan ((√(2tan x))−1) +arctan ((√(2tan x))+1)))+C

tanxdx=[t=tanxdx=2cos2xtanxdt=2tdtt4+1]=2t2t4+1dt=2t2(t22t+1)(t2+2t+1)dt==2(2t4(t22t+1)2t4(t2+2t+1))dt==12(2t1t22t+1+1t22t+12t+1t2+2t+1+1t2+2t+1)dt==24(2t2t22t+12t+2t2+2t+1)dt+12(1t22t+1+1t2+2t+1)dt==24(ln(t22t+1)ln(t2+2t+1))+22(arctan(2t1)+arctan(2t+1))==24(lntanx2tanx+1tanx+2tanx+1+2(arctan(2tanx1)+arctan(2tanx+1)))+C

Commented by behi83417@gmail.com last updated on 26/Feb/19

arctg((√(2tgx))−1)+arctg((√(2tgx))+1)=  arctg((2(√(2tgx)))/(2(1−tgx)))=arctg(((√(2tgx))/(1−tgx)))=  arccos∣cosx−sinx∣  ln((tgx−(√(2tgx))+1)/(tgx+(√(2tgx))+1))=ln(((tgx+1−(√(2tgx)))^2 )/(tg^2 x+1))=  =2ln[cosx.(tgx+1−(√(2tgx))]=  =2ln[sinx+cosx−(√(sin2x))]  ⇒I=((√2)/2).ln∣cosx+sinx−(√(sin2x))∣+2cos^(−1) ∣cosx−sinx∣+C

arctg(2tgx1)+arctg(2tgx+1)=arctg22tgx2(1tgx)=arctg(2tgx1tgx)=arccoscosxsinxlntgx2tgx+1tgx+2tgx+1=ln(tgx+12tgx)2tg2x+1==2ln[cosx.(tgx+12tgx]==2ln[sinx+cosxsin2x]I=22.lncosx+sinxsin2x+2cos1cosxsinx+C

Commented by MJS last updated on 26/Feb/19

thank you!

thankyou!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com