Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 189357 by BaliramKumar last updated on 15/Mar/23

  How many pairs of positive integers x, y exist such that HCF (x, y) + LCM(x, y) = 91?

How many pairs of positive integers x, y exist such that HCF (x, y) + LCM(x, y) = 91?

Commented by mr W last updated on 15/Mar/23

5 pairs:  (1,90)  (2,45)  (5,18)  (7,84)  (9,10)

5pairs:(1,90)(2,45)(5,18)(7,84)(9,10)

Commented by BaliramKumar last updated on 15/Mar/23

sir,    answer is 8

sir,answeris8

Commented by som(math1967) last updated on 15/Mar/23

(13,78) ,(21,28) ,(26,39)  91=1×7×13 ∴H.C.F of x,y  either 1or 7or 13

(13,78),(21,28),(26,39)91=1×7×13H.C.Fofx,yeither1or7or13

Commented by mr W last updated on 15/Mar/23

thanks sirs!

thankssirs!

Commented by BaliramKumar last updated on 15/Mar/23

nice sir

nicesir

Answered by BaliramKumar last updated on 15/Mar/23

  Let  HCF(x, y) = k  x = k∙a,     y = k∙b,     LCM(x, y) = k∙a∙b  HCF(x, y) + LCM(x, y) = 91  k + k∙a∙b = 91  k(1 + a∙b) = 91  ..........(i)  k = 1, 7, 13, 91   put    k = 1        in equ. (i)  1(1 + ab) = 91  ab = 90 = 2^1 ×3^2 ×5^1      [3 distinct prime factor of 90]  No. of co−prime pair (a, b) = 2^(3−1)  = 4   determinant ((((a, b)),((1, 90)),((2, 45)),((5, 18)),((9, 10))),(((x, y) = (ka, kb)),((1, 90)),((2, 45)),((5, 18)),((9, 10))))  put    k = 7        in equ. (i)  7(1 + ab) = 91  ab = 12 = 2^2 ×3^1      [2 distinct prime factor of 12]  No. of co−prime pair (a, b) = 2^(2−1)  = 2   determinant ((((a, b)),((1, 12)),((3, 4))),(((x, y) = (ka, kb)),((7, 84)),((21, 28))))  put    k = 13        in equ. (i)  13(1 + ab) = 91  ab = 6 = 2^1 ×3^1      [2 distinct prime factor of 6]  No. of co−prime pair (a, b) = 2^(2−1)  = 2   determinant ((((a, b)),((1, 6)),((2, 3))),(((x, y) = (ka, kb)),((13, 78)),((26, 39))))    Total pair = 4 + 2 + 2 = 8 Answer

LetHCF(x,y)=kx=ka,y=kb,LCM(x,y)=kabHCF(x,y)+LCM(x,y)=91k+kab=91k(1+ab)=91..........(i)k=1,7,13,91putk=1inequ.(i)1(1+ab)=91ab=90=21×32×51[3distinctprimefactorof90]No.ofcoprimepair(a,b)=231=4(a,b)(1,90)(2,45)(5,18)(9,10)(x,y)=(ka,kb)(1,90)(2,45)(5,18)(9,10)putk=7inequ.(i)7(1+ab)=91ab=12=22×31[2distinctprimefactorof12]No.ofcoprimepair(a,b)=221=2(a,b)(1,12)(3,4)(x,y)=(ka,kb)(7,84)(21,28)putk=13inequ.(i)13(1+ab)=91ab=6=21×31[2distinctprimefactorof6]No.ofcoprimepair(a,b)=221=2(a,b)(1,6)(2,3)(x,y)=(ka,kb)(13,78)(26,39)Totalpair=4+2+2=8Answer

Answered by Rasheed.Sindhi last updated on 15/Mar/23

hcf(x,y)+lcm(x,y)=91  lcm(x,y)=91−hcf(x,y)  ((lcm(x,y))/(hcf(x,y)))=((91−hcf(x,y))/(hcf(x,y)))∈Z^+                               [∵ hcf(x,y) ∣ lcm(x,y) ]  ⇒hcf(x,y)=1,7,13  ⇒lcm(x,y)=90,84,78  Case1: hcf(x,y)=1 ∧ lcm(x,y)=90       hcf(x,y)×lcm(x,y)=x×y       (1)×lcm(x,y)=x×y       lcm(x,y)=x×y=90  (x,y)=(1,90),(2,45),(5,18),(9,10)  (4 pairs)  Case2: hcf(x,y)=7 ∧ lcm(x,y)=84       hcf(x,y)×lcm(x,y)=x×y       (7)×lcm(x,y)=x×y       lcm(x,y)=((x×y)/7)=84             x×y=588=2^2 ×3×7^2   (3×7,2^2 ×7)=(21,28)  (7,4×3×7)=(7,84)  (2 pairs)  Case3: hcf(x,y)=13 ∧ lcm(x,y)=78       hcf(x,y)×lcm(x,y)=x×y      (13)×lcm(x,y)=x×y      lcm(x,y)=((x×y)/(13))=78        x×y=13×78=1014=2×3×13^2   (x,y)  =(13,2×3×13)=(13,78)  =(2×13,3×13)=(26,39)  (2 pairs)     4+2+2=8 pairs  But as if (x,y) is solution so as  (y,x) is also solution.  So Total pairs=16

hcf(x,y)+lcm(x,y)=91lcm(x,y)=91hcf(x,y)lcm(x,y)hcf(x,y)=91hcf(x,y)hcf(x,y)Z+[hcf(x,y)lcm(x,y)]hcf(x,y)=1,7,13lcm(x,y)=90,84,78Case1:hcf(x,y)=1lcm(x,y)=90hcf(x,y)×lcm(x,y)=x×y(1)×lcm(x,y)=x×ylcm(x,y)=x×y=90(x,y)=(1,90),(2,45),(5,18),(9,10)(4pairs)Case2:hcf(x,y)=7lcm(x,y)=84hcf(x,y)×lcm(x,y)=x×y(7)×lcm(x,y)=x×ylcm(x,y)=x×y7=84x×y=588=22×3×72(3×7,22×7)=(21,28)(7,4×3×7)=(7,84)(2pairs)Case3:hcf(x,y)=13lcm(x,y)=78hcf(x,y)×lcm(x,y)=x×y(13)×lcm(x,y)=x×ylcm(x,y)=x×y13=78x×y=13×78=1014=2×3×132(x,y)=(13,2×3×13)=(13,78)=(2×13,3×13)=(26,39)(2pairs)4+2+2=8pairsButasif(x,y)issolutionsoas(y,x)isalsosolution.SoTotalpairs=16

Commented by BaliramKumar last updated on 15/Mar/23

Nice

Nice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com