Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162604 by amin96 last updated on 30/Dec/21

I=∫_0 ^(π/4) xtg(x)dx=?

I=0π4xtg(x)dx=?

Answered by Ar Brandon last updated on 30/Dec/21

I=∫_0 ^(π/4) xtanxdx     =−[xln(cosx)]_0 ^(π/4) +∫_0 ^(π/4) ln(cosx)dx     =−(π/4)ln((1/( (√2))))+(G/2)−((πln2)/4)=(G/2)−((πln2)/8)

I=0π4xtanxdx=[xln(cosx)]0π4+0π4ln(cosx)dx=π4ln(12)+G2πln24=G2πln28

Terms of Service

Privacy Policy

Contact: info@tinkutara.com