Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 137187 by mathocean1 last updated on 30/Mar/21

I_n =∫_0 ^(π/2) sin^n x dx  Write a relation between I_(n+2)  and I_n .

In=0π2sinnxdxWritearelationbetweenIn+2andIn.

Answered by Dwaipayan Shikari last updated on 30/Mar/21

∫_0 ^(π/2) sin^n x dx=∫_0 ^(π/2) sin^(2(((n+1)/2))−1) (x)cos^(2((1/2))−1) (x)dx  =((Γ(((n+1)/2))Γ((1/2)))/(2Γ((n/2)+1)))=J_n   J_(n+2) =((Γ(((n+3)/2))Γ((1/2)))/(2Γ((n/2)+2)))=(((((n+1)/2)))/(((n/2)+1)))J_n

0π2sinnxdx=0π2sin2(n+12)1(x)cos2(12)1(x)dx=Γ(n+12)Γ(12)2Γ(n2+1)=JnJn+2=Γ(n+32)Γ(12)2Γ(n2+2)=(n+12)(n2+1)Jn

Answered by mathmax by abdo last updated on 30/Mar/21

I_(n+2) =∫_0 ^(π/2)  sin^n x sin^2  xdx =∫_0 ^(π/2)  sin^n x(1−cos^2 x)dx  =∫_0 ^(π/2)  sin^n xdx −∫_0 ^(π/2)  cos^2 x sin^n x dx=I_n −J  J =∫_0 ^(π/2)  cosx(cosx sin^n x)dx =_(by parts)   [((sin^(n+1) x)/(n+1))cosx]_0 ^(π/2) −∫_0 ^(π/2) (−sinx)((sin^(n+1) x)/(n+1))dx  =(1/(n+1))∫_0 ^(π/2)  sin^(n+2) xdx ⇒I_(n+2 ) =I_n −(1/(n+1))I_(n+2)  ⇒  (1+(1/(n+1)))I_(n+2) =I_n  ⇒((n+2)/(n+1))I_(n+2) =I_n  ⇒I_(n+2) =((n+1)/(n+2))I_n

In+2=0π2sinnxsin2xdx=0π2sinnx(1cos2x)dx=0π2sinnxdx0π2cos2xsinnxdx=InJJ=0π2cosx(cosxsinnx)dx=byparts[sinn+1xn+1cosx]0π20π2(sinx)sinn+1xn+1dx=1n+10π2sinn+2xdxIn+2=In1n+1In+2(1+1n+1)In+2=Inn+2n+1In+2=InIn+2=n+1n+2In

Terms of Service

Privacy Policy

Contact: info@tinkutara.com