All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 90135 by Ar Brandon last updated on 21/Apr/20
In=∫t=0+∞dt(t+1)(t+2)...(t+n)
Answered by TANMAY PANACEA. last updated on 21/Apr/20
I=∫dt(t+1)(t+2)(t+3)..(t+n)1(t+1)(t+2)(t+3)..(t+n)=a1t+1+a2t+2+..+an(t+n)∫0∞(a1t+1+a2t+2+..+ant+n)dt=∣a1ln(t+1)+a2ln(t+2)+..+anln(t+n)∣0∞nowcalculationtofinda1,a2...an1=a1(t+2)(t+3)..(t+n)+a2(t+1)(t+3)..(t+n)+..an(t+1)(t+2)..(t+n−1)putt+1=01=a1×(n−1)!→a1=1(n−1)!putt+2=0a2×(−2+1)(1.2...n−2)a2×(−1)(n−2)!=1→a2=1(−1)(n−2)!putt+3=0a3(t+1)(t+2)(t+4)...(t+n)=1a3(−3+1)(−3+2)(1.2....n−3)=1a3=12×(n−3)!triedtosolve
Terms of Service
Privacy Policy
Contact: info@tinkutara.com