Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 206868 by depressiveshrek last updated on 28/Apr/24

If A, B and A+B are non−singular  square matrices, prove that A^(−1) +B^(−1)   is also non−singular.

IfA,BandA+Barenonsingularsquarematrices,provethatA1+B1isalsononsingular.

Answered by aleks041103 last updated on 28/Apr/24

A^(−1) +B^(−1) =A^(−1) (E+AB^(−1) )=  =A^(−1) (B+A)B^(−1)   ⇒det(A^(−1) +B^(−1) )=det(A^(−1) B^(−1) (A+B))=  =det(A^(−1) )det(B^(−1) )det(A+B)    Since ∃A^(−1) ,B^(−1)  ⇒  ⇒det(A^(−1) +B^(−1) )=((det(A+B))/(det(A)det(B)))  Since A, B and A+B are nonsingular  ⇒det(A), det(B), det(A+B) ≠ 0  ⇒det(A^(−1) +B^(−1) )=((det(A+B))/(det(A)det(B)))≠0  ⇒det(A^(−1) +B^(−1) )≠0  ⇒A^(−1) +B^(−1)  is also nonsingular.

A1+B1=A1(E+AB1)==A1(B+A)B1det(A1+B1)=det(A1B1(A+B))==det(A1)det(B1)det(A+B)SinceA1,B1det(A1+B1)=det(A+B)det(A)det(B)SinceA,BandA+Barenonsingulardet(A),det(B),det(A+B)0det(A1+B1)=det(A+B)det(A)det(B)0det(A1+B1)0A1+B1isalsononsingular.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com