Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 51248 by Tawa1 last updated on 25/Dec/18

If     ((R_1  + jωL)/R_3 )  =  (R_2 /(R_4  − j (1/(ωC))))  ,   where  R_1 , R_2 , R_3 , R_4 , ω, L and C  are real ,  show that    L = ((C R_2 R_3 )/(ω^2 C^2 R_4 ^2  + 1))

IfR1+jωLR3=R2R4j1ωC,whereR1,R2,R3,R4,ω,LandCarereal,showthatL=CR2R3ω2C2R42+1

Answered by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18

(R_1 /R_3 )+j((wL)/R_3 )=(R_2 /(R_4 +(1/(w^2 C^2 ))))(R_4 +j(1/(wC)))  comparing real and imaginary part  ((wL)/R_3 )=(R_2 /(R_4 +(1/(w^2 C^2 ))))((1/(wC)))  L=(R_3 /w)×((R_2 /(wC))/((R_4 w^2 C^2 +1)/(w^2 C^2 )))  L=(R_3 /w)×((R_2 w^2 C^2 )/(wC(R_4 w^2 C^2 +1)))=((R_2 R_3 C)/(1+R_4 w^2 C^2 ))

R1R3+jwLR3=R2R4+1w2C2(R4+j1wC)comparingrealandimaginarypartwLR3=R2R4+1w2C2(1wC)L=R3w×R2wCR4w2C2+1w2C2L=R3w×R2w2C2wC(R4w2C2+1)=R2R3C1+R4w2C2

Commented by Tawa1 last updated on 25/Dec/18

God bless you sir

Godblessyousir

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Dec/18

thank you...

thankyou...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com