All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 5638 by Daily last updated on 23/May/16
Ifa⩽0,thentherealvaluesofxsatisfyingx2−2a∣x−a∣−3a2=0are
Answered by Yozzii last updated on 23/May/16
Wecanlookforsolutionsbasedonintervalsthatcovertheentirerealline.a⩽0issomefixedrealvalue.Ifx−a>0orx>a⇒∣x−a∣=x−a.∴x2−2a(x−a)−3a2=0x2−2ax−a2=0x2−2ax+a2−2a2=0(x−a)2=2a2⇒x=a±2a2x=a±2∣a∣whicharerealvaluesofx.a⩽0⇒∣a∣=−a⇒x=(1±2)aNowx>a⇒x≠(1+2)abutx=(1−2)asincea⩽0.{a⩽0⇒(1−2)a⩾0⩾aorx⩾a}Ifx=a⩽0theequationgivesa2−3a2=0⇒2a2=0.Thisistrueonlyifa=0.∴x=0ispossible.Ifx−a<0⇒x<a⇒∣x−a∣=a−x.∴x2−2a(a−x)−3a2=0x2+2ax−5a2=0x2+2ax+a2−6a2=0(x+a)2=6a2⇒x=−a±6∣a∣=a(−1±6)Sincea⩽0andx<a⇒x≠(−1−6)abutx=a(6−1).∴Ifa=0thequadraticequationhastwoequalrootsthenx=0.Ifa≠0thenx=(6−1)aorx=(1−2)a.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com