Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 208823 by Ismoiljon_008 last updated on 23/Jun/24

     If a+b+c=15, then find the smallest value      of the expression (√(a^2 +1))+(√(b^2 +9))+(√(c^2 +16)).       Help please

Ifa+b+c=15,thenfindthesmallestvalueoftheexpressiona2+1+b2+9+c2+16.Helpplease

Answered by mr W last updated on 23/Jun/24

(√(a^2 +1^2 ))+(√(b^2 +3^2 ))+(√(c^2 +4^2 ))  ≥(√((a+b+c)^2 +(1+3+4)^2 ))  =(√(15^2 +8^2 ))  =17 =minimum

a2+12+b2+32+c2+42(a+b+c)2+(1+3+4)2=152+82=17=minimum

Commented by Ismoiljon_008 last updated on 24/Jun/24

thanks

thanks

Commented by mr W last updated on 24/Jun/24

∣A^(→) ∣+∣B^(→) ∣+∣C^(→) ∣≥∣A^(→) +B^(→) +C^(→) ∣  with A^(→) =(a, 1), B^(→) =(b, 3), C^(→) =(c, 4)

A+B+C∣⩾∣A+B+CwithA=(a,1),B=(b,3),C=(c,4)

Commented by mr W last updated on 24/Jun/24

Answered by A5T last updated on 24/Jun/24

[E]^2 =[(√(a^2 +1))+(√(b^2 +9))+(√(c^2 +16 ))]^2   =a^2 +b^2 +c^2 +1+9+16+2(√(a^2 +1))(√(b^2 +9))+  2(√(b^2 +9))(√(c^2 +16))+2(√(c^2 +16))(√(a^2 +1))  ≥a^2 +b^2 +c^2 +26+2(ab+1×3)+2(bc+3×4)+  2(ac+4×1)  =(a+b+c)^2 −2ab−2bc−2ca+2ab+2ac+2bc+26  +6+24+8=15^2 +8^2 =17^2   E^2 ≥17^2 ⇒E≥17  Equality when (a,b,c)=(λ,3λ,4λ)⇒8λ=15  ⇒λ=((15)/8)⇒(a,b,c)=(((15)/8),((45)/8),((15)/2))

[E]2=[a2+1+b2+9+c2+16]2=a2+b2+c2+1+9+16+2a2+1b2+9+2b2+9c2+16+2c2+16a2+1a2+b2+c2+26+2(ab+1×3)+2(bc+3×4)+2(ac+4×1)=(a+b+c)22ab2bc2ca+2ab+2ac+2bc+26+6+24+8=152+82=172E2172E17Equalitywhen(a,b,c)=(λ,3λ,4λ)8λ=15λ=158(a,b,c)=(158,458,152)

Commented by A5T last updated on 24/Jun/24

∣u∣∣v∣≥u∙v  u=(u_1 ,u_2 ), v=(v_1 ,v_2 )  ⇒(√(u_1 ^2 +u_2 ^2 ))(√(v_1 ^2 +v_2 ^2 ))≥u_1 v_1 +u_2 v_2   Equality holds when (u_1 ,u_2 )=(λv_1 ,λv_2 )

u∣∣v∣⩾uvu=(u1,u2),v=(v1,v2)u12+u22v12+v22u1v1+u2v2Equalityholdswhen(u1,u2)=(λv1,λv2)

Commented by Ismoiljon_008 last updated on 24/Jun/24

thank

thank

Terms of Service

Privacy Policy

Contact: info@tinkutara.com