Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205643 by hardmath last updated on 26/Mar/24

If  a,b,c>0  and  a^2  + b^2  + c^2  = abc  Prove that:  (a/(a^2  + bc)) + (b/(b^2  + ac)) + (c/(c^2  + ab)) ≤ (1/2)

Ifa,b,c>0anda2+b2+c2=abcProvethat:aa2+bc+bb2+ac+cc2+ab12

Answered by A5T last updated on 29/Mar/24

Σ(a/(a^2 +bc))≤(√(a^2 +b^2 +c^2 ))(√(Σ(1/((a^2 +bc)^2 ))))  ≤(√(abc))×(1/(2(√(abc))))((√((1/a)+(1/b)+(1/c))))≤(1/2)((√((ab+bc+ca)/(abc))))  =(1/2)(√((ab+bc+ca)/(a^2 +b^2 +c^2 )))≤(1/2)

Σaa2+bca2+b2+c2Σ1(a2+bc)2abc×12abc(1a+1b+1c)12(ab+bc+caabc)=12ab+bc+caa2+b2+c212

Terms of Service

Privacy Policy

Contact: info@tinkutara.com