Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 178415 by Spillover last updated on 16/Oct/22

If acosh x+bsinh x=c   show that.  x=ln [((c±(√(c^2 +b^2 −a^2 )))/(a+b))]

Ifacoshx+bsinhx=cshowthat.x=ln[c±c2+b2a2a+b]

Answered by haladu last updated on 16/Oct/22

     acosh x + b sinh x  =  C          cosh (x) = ((e^x  + e^(−x)  )/2)      sinh (x) = ((e^x  −e^(−x) )/2)            a { ((e^x + e^(−x) )/2) } +b { ((e^x  −e^(−x) )/2) }  = c          mutiply both sides by  e^x            (a/2) {  (e^x )^2  +1 } +(b/2) { (e^x )^2  −1 }  = ce^x             (e^x )^2  (((a+b)/2))  + ((a−b)/2)   =  ce^x              (e^x )^2  (((a +b)/2) ) − ce^x   +  ((a−b)/2)  =0         mutiply both  sides by   (2/(a+b))       ⇒  ( e^(x )   )^2   − ((2c)/(a+b)) (e^x  )  +  ((a−b)/(a+b))  =0        ⇒  ( e^x  )^2  +2 ( −(c/(a +b)) )(e^x ) = ((b −a)/(a +b))          ⇒    ( e^x   −(c/(a +b)) )^2   =  ((b −a)/(a +b)) + (c^2 /((a+b)^2 ))                e^x   −(c/(a +b))   =   (√( (((b−a)(b+a) +c^2 )/((a+b)^2 ))))           ⇒  e^x     =    ((−c± (√( b^2  −a^2  +c^2 )))/((a +b)))          ⇒  x   = ln   {  ((−c ± (√( b^2  + c^2  −a^2 )))/(a +b))  }

acoshx+bsinhx=Ccosh(x)=ex+ex2sinh(x)=exex2a{ex+ex2}+b{exex2}=cmutiplybothsidesbyexa2{(ex)2+1}+b2{(ex)21}=cex(ex)2(a+b2)+ab2=cex(ex)2(a+b2)cex+ab2=0mutiplybothsidesby2a+b(ex)22ca+b(ex)+aba+b=0(ex)2+2(ca+b)(ex)=baa+b(exca+b)2=baa+b+c2(a+b)2exca+b=(ba)(b+a)+c2(a+b)2ex=c±b2a2+c2(a+b)x=ln{c±b2+c2a2a+b}

Commented by Spillover last updated on 16/Oct/22

thank you

thankyou

Commented by haladu last updated on 16/Oct/22

     You are wellcome

Youarewellcome

Answered by CElcedricjunior last updated on 16/Oct/22

on acoshx+bsinhx=c  =>acoshx+bsinhx=a(((e^x +e^(−x) )/2))+b(((e^x −e^(−x) )/2))                         =                        =>(a+b)e^(2x) +(a−b)−2ce^x =0  =>Δ=4c^2 −4(a^2 −b^2 )  supposons que 𝚫>0 ie c^2 >a^2 −b^2 =>𝚫=2(√(c^2 +b^2 −a^2 ))  =>e^x =((c∓(√(c^2 +b^2 −a^2 )))/(a+b))  =>x=ln∣((c∓(√(c^2 +b^2 −c)))/(a+b))∣     ............le celebre cedric junior.......

onacoshx+bsinhx=c=>acoshx+bsinhx=a(ex+ex2)+b(exex2)==>(a+b)e2x+(ab)2cex=0=>Δ=4c24(a2b2)supposonsqueΔ>0iec2>a2b2=>Δ=2c2+b2a2=>ex=cc2+b2a2a+b=>x=lncc2+b2ca+b............lecelebrecedricjunior.......

Commented by Spillover last updated on 16/Oct/22

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com