Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 56904 by pete last updated on 26/Mar/19

If α and β are the roots of of the equation  3x^2 −x−3=0, find thevalue of (α^2 −β^2 )  if α>β.

Ifαandβaretherootsofoftheequation3x2x3=0,findthevalueof(α2β2)ifα>β.

Answered by tanmay.chaudhury50@gmail.com last updated on 26/Mar/19

(α−β)^2 =(α+β)^2 −4αβ  α+β=((−b)/a)=((−(−1))/3)=(1/3)  αβ=(c/a)=((−3)/3)=−1                    (α−β)^2 =(α+β)^2 −4αβ                                     =(1/9)+4=((37)/9)  (α−β)=((√(37))/3)  α^2 −β^2 =(α+β)(α−β)                =(1/3)×((√(37))/3)=((√(37))/9)

(αβ)2=(α+β)24αβα+β=ba=(1)3=13αβ=ca=33=1(αβ)2=(α+β)24αβ=19+4=379(αβ)=373α2β2=(α+β)(αβ)=13×373=379

Commented by pete last updated on 26/Mar/19

Thanks for your help.

Thanksforyourhelp.

Commented by tanmay.chaudhury50@gmail.com last updated on 26/Mar/19

most welcome...

mostwelcome...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com