Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 22871 by keshavnimgade85@gmail.com last updated on 23/Oct/17

If  f(n)=(1/n)[(n+1)(n+2)(n+3)...(n+n)]^(1/n) ,  then   lim_(n→∞) f(n) =

Iff(n)=1n[(n+1)(n+2)(n+3)...(n+n)]1/n,thenlimnf(n)=

Answered by ajfour last updated on 23/Oct/17

f(n)=[(1+(1/n))(1+(2/n))...(1+(n/n))]^(1/n)   lim_(n→∞) (ln [f(n)])=∫_0 ^(  1) ln (1+x)dx            =xln (1+x)∣_0 ^1 −∫_0 ^(  1) (x/(1+x)) dx            =ln 2−[x−ln (1+x)]∣_0 ^1              =ln 2−1+ln 2 =2ln 2−1  ⇒   lim_(n→∞) f(n) =e^(ln (4/e))  =(4/e) .

f(n)=[(1+1n)(1+2n)...(1+nn)]1/nlimn(ln[f(n)])=01ln(1+x)dx=xln(1+x)0101x1+xdx=ln2[xln(1+x)]01=ln21+ln2=2ln21limnf(n)=eln(4/e)=4e.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com