Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 196427 by Erico last updated on 24/Aug/23

If  f(x)=∫^( x) _( 0) (dt/(t+e^(−f(t)) )), determine f(x)

Iff(x)=0xdtt+ef(t),determinef(x)

Answered by witcher3 last updated on 25/Aug/23

f(0)=0  f′(x)=(1/(x+e^(−f(x)) ))  ⇔f′(x)(x+e^(−f(x)) )=1  f(x)=y  ⇔(dy/dx)(x+e^(−y) )=1  ⇔dy(x+e^(−y) )−dx=0  ⇔dy(x+e^(−y) )f(y)−f(y)dx=0,let f bee  such thatf(y)=−f′(y)⇒f(y)=e^(−y)   ⇒(x+e^(−y) )e^(−y) dy−e^(−y) dx=0  exacte Differential Equation  Ψ(x,y)solution  ∂_y Ψ=(x+e^(−y) )e^(−y) ⇒Ψ(x,y)=−xe^(−y) −(e^(−2y) /2)+f(x)  ∂_x Ψ=−e^(−y) ⇒Ψ=−xe^(−y) +f(y)  ⇒f′(x)−e^(−y) =−e^(−y) ⇒f(x)=c  xe^(−y) +f′(y)=xe^(−y) +e^(−2y) ⇒f(y)=−(e^(−2y) /2)  Ψ(x,y)=−xe^(−y) −(e^(−2y) /2)+c=0  implicite solution  ⇒f′(x)=0⇒f=c,−xe^(−y) +  Ψ(x,y)=−xe^(−y) −(e^(−2y) /2)+c  Ψ(x,f(x))=−xe^(−f(x)) −(e^(−2f(x)) /2)=C  −xt−(t^2 /2)=c  ⇒t^2 +2xt−2c=0  t=((−2x−(√(4x^2 +8c)))/2)  −ln(−x+(√(x^2 +2c)))=ln((((√(x^2 +2c))+x)/(2c)))=f(x)

f(0)=0f(x)=1x+ef(x)f(x)(x+ef(x))=1f(x)=ydydx(x+ey)=1dy(x+ey)dx=0dy(x+ey)f(y)f(y)dx=0,letfbeesuchthatf(y)=f(y)f(y)=ey(x+ey)eydyeydx=0exacteDifferentialEquationΨ(x,y)solutionyΨ=(x+ey)eyΨ(x,y)=xeye2y2+f(x)xΨ=eyΨ=xey+f(y)f(x)ey=eyf(x)=cxey+f(y)=xey+e2yf(y)=e2y2Ψ(x,y)=xeye2y2+c=0implicitesolutionf(x)=0f=c,xey+Ψ(x,y)=xeye2y2+cΨ(x,f(x))=xef(x)e2f(x)2=Cxtt22=ct2+2xt2c=0t=2x4x2+8c2ln(x+x2+2c)=ln(x2+2c+x2c)=f(x)

Answered by mr W last updated on 05/Jul/24

f(x)=∫_0 ^x (dt/(t+e^(−f(t)) ))  f′(x)=(1/(x+e^(−f(x)) ))  (dy/dx)=(1/(x+e^(−y) ))  (dx/dy)=x+e^(−y)   (dx/dy)−x=e^(−y)   ⇒x=((∫e^(−y) e^(−y) dy+(C/2))/e^(−y) )=((−e^(−2y) +C)/(2e^(−y) ))=(1/2)(Ce^y −e^(−y) )  ⇒Ce^y −e^(−y) =2x  ⇒Ce^(2y) −2xe^y −1=0  ⇒e^y =((x±(√(x^2 +C)))/C)  ⇒y=ln ((x±(√(x^2 +C)))/C)

f(x)=0xdtt+ef(t)f(x)=1x+ef(x)dydx=1x+eydxdy=x+eydxdyx=eyx=eyeydy+C2ey=e2y+C2ey=12(Ceyey)Ceyey=2xCe2y2xey1=0ey=x±x2+CCy=lnx±x2+CC

Terms of Service

Privacy Policy

Contact: info@tinkutara.com