All Questions Topic List
Logarithms Questions
Previous in All Question Next in All Question
Previous in Logarithms Next in Logarithms
Question Number 196427 by Erico last updated on 24/Aug/23
Iff(x)=∫0xdtt+e−f(t),determinef(x)
Answered by witcher3 last updated on 25/Aug/23
f(0)=0f′(x)=1x+e−f(x)⇔f′(x)(x+e−f(x))=1f(x)=y⇔dydx(x+e−y)=1⇔dy(x+e−y)−dx=0⇔dy(x+e−y)f(y)−f(y)dx=0,letfbeesuchthatf(y)=−f′(y)⇒f(y)=e−y⇒(x+e−y)e−ydy−e−ydx=0exacteDifferentialEquationΨ(x,y)solution∂yΨ=(x+e−y)e−y⇒Ψ(x,y)=−xe−y−e−2y2+f(x)∂xΨ=−e−y⇒Ψ=−xe−y+f(y)⇒f′(x)−e−y=−e−y⇒f(x)=cxe−y+f′(y)=xe−y+e−2y⇒f(y)=−e−2y2Ψ(x,y)=−xe−y−e−2y2+c=0implicitesolution⇒f′(x)=0⇒f=c,−xe−y+Ψ(x,y)=−xe−y−e−2y2+cΨ(x,f(x))=−xe−f(x)−e−2f(x)2=C−xt−t22=c⇒t2+2xt−2c=0t=−2x−4x2+8c2−ln(−x+x2+2c)=ln(x2+2c+x2c)=f(x)
Answered by mr W last updated on 05/Jul/24
f(x)=∫0xdtt+e−f(t)f′(x)=1x+e−f(x)dydx=1x+e−ydxdy=x+e−ydxdy−x=e−y⇒x=∫e−ye−ydy+C2e−y=−e−2y+C2e−y=12(Cey−e−y)⇒Cey−e−y=2x⇒Ce2y−2xey−1=0⇒ey=x±x2+CC⇒y=lnx±x2+CC
Terms of Service
Privacy Policy
Contact: info@tinkutara.com