Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 211502 by MathematicalUser2357 last updated on 11/Sep/24

If  { ((f(x)=x^2 )),((g(x)=sin x)) :},  Then find (df/dg).

If{f(x)=x2g(x)=sinx,Thenfinddfdg.

Answered by a.lgnaoui last updated on 11/Sep/24

(df/dg)=(df/dx)×(dx/dg).=  (f^′ /(g′))  f′=2x      g′=cos x  ⇒         (df/dg)=((2x)/(cos x))

dfdg=dfdx×dxdg.=fgf=2xg=cosxdfdg=2xcosx

Commented by MathematicalUser2357 last updated on 12/Sep/24

Can be solved in other way.  (df/dg)=((2x dx)/(cos x dx))=((2x)/(cos x))=2x sec x (No need to transform (1/(cos x)) to sec x)

Canbesolvedinotherway.dfdg=2xdxcosxdx=2xcosx=2xsecx(Noneedtotransform1cosxtosecx)

Answered by MATHEMATICSAM last updated on 11/Sep/24

f(x) = x^2  ⇒ (df/dx) = 2x  g(x) = sinx ⇒ (dg/dx) = cosx  (df/dg) = ((df/dx)/(dg/dx)) = ((2x)/(cosx)) = 2xsecx

f(x)=x2dfdx=2xg(x)=sinxdgdx=cosxdfdg=dfdxdgdx=2xcosx=2xsecx

Commented by MathematicalUser2357 last updated on 12/Sep/24

  🙏🙏🙏

🙏🙏🙏

Terms of Service

Privacy Policy

Contact: info@tinkutara.com