All Questions Topic List
Logarithms Questions
Previous in All Question Next in All Question
Previous in Logarithms Next in Logarithms
Question Number 100675 by bobhans last updated on 28/Jun/20
Iflog2x(118)=log18(13y)=log3y(12x)find3x−2y
Commented by bramlex last updated on 28/Jun/20
⇔2x=3y=18→{x=9y=6∴3x−2y=27−12=15
Answered by 1549442205 last updated on 28/Jun/20
log2x(118)=log2x(1)−log2x18=−log2x18=log3y(12x)=log3y1−log3y(2x)=−log3y(2x)log18(13y)=log181−log18(3y)=−log18(3y),sofromthehypothesisweget:log2x18=log3y(2x)=log18(3y)=a.So{(2x)a=18(1)(3y)a=2x(2)(∗)18a=3y(3)From(2)weget(2x)a=[(3y)a]a=(3y)a2(4)From(3)weget(3y)a2=(18a)a2=18a3(5)From(4),(5)weget(2x)a=18a3(6)From(1)and(6)weobtain18=18a3⇒a3=1⇔a=1.Replaceinto(∗)weget{3y=2x2x=1818=3y⇔{x=9y=6Therefore,3x−2y=3×9−2×6=15
Terms of Service
Privacy Policy
Contact: info@tinkutara.com