Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 100675 by bobhans last updated on 28/Jun/20

If log _(2x) ((1/(18))) = log _(18) ((1/(3y))) = log _(3y) ((1/(2x)))  find 3x−2y

Iflog2x(118)=log18(13y)=log3y(12x)find3x2y

Commented by bramlex last updated on 28/Jun/20

⇔ 2x = 3y = 18 → { ((x=9)),((y=6)) :}  ∴ 3x−2y = 27−12 = 15

2x=3y=18{x=9y=63x2y=2712=15

Answered by 1549442205 last updated on 28/Jun/20

  log_(2x) ((1/(18)))=log_(2x) (1)−log_(2x) 18=−log_(2x) 18  =log_(3y) ((1/(2x)))=log_(3y) 1−log_(3y) (2x)=−log_(3y) (2x)  log_(18) ((1/(3y)))=log_(18) 1−log_(18) (3y)=−log_(18) (3y)  ,so from the hypothesis we get:  log_(2x) 18=log_(3y) (2x)=log_(18) (3y)=a.So   { (((2x)^a =18(1))),(((3y)^a =2x(2)   (∗))),((18^a =3y (3))) :}  From (2)we get (2x)^a =[(3y)^a ]^a =(3y)^a^2  (4)  From (3) we get (3y)^a^2  =(18^a )^a^2  =18^a^3  (5)  From(4) ,(5) we get (2x)^a =18^a^3   (6)  From (1) and (6) we obtain  18=18^a^3  ⇒a^3 =1⇔a=1.Replace into (∗)  we get  { ((3y=2x)),((2x=18)),((18=3y)) :}   ⇔ { ((x=9)),((y=6)) :}  Therefore,3x−2y=3×9−2×6=15

log2x(118)=log2x(1)log2x18=log2x18=log3y(12x)=log3y1log3y(2x)=log3y(2x)log18(13y)=log181log18(3y)=log18(3y),sofromthehypothesisweget:log2x18=log3y(2x)=log18(3y)=a.So{(2x)a=18(1)(3y)a=2x(2)()18a=3y(3)From(2)weget(2x)a=[(3y)a]a=(3y)a2(4)From(3)weget(3y)a2=(18a)a2=18a3(5)From(4),(5)weget(2x)a=18a3(6)From(1)and(6)weobtain18=18a3a3=1a=1.Replaceinto()weget{3y=2x2x=1818=3y{x=9y=6Therefore,3x2y=3×92×6=15

Terms of Service

Privacy Policy

Contact: info@tinkutara.com