Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 110173 by ajfour last updated on 27/Aug/20

If  Σ_(r=1) ^n t_r =((n(n+1)(n+2)(n+3))/8)  then    lim_(n→∞)   Σ_(r=1) ^n  (1/t_r ) = ?

Ifnr=1tr=n(n+1)(n+2)(n+3)8thenlimnnr=11tr=?

Answered by Olaf last updated on 27/Aug/20

t_n  = Σ_(r=1) ^n t_r −Σ_(r=1) ^(n−1) t_r   t_n  = ((n(n+1)(n+2)(n+3))/8)−(((n−1)n(n+1)(n+2))/8)  t_n  = ((n(n+1)(n+2)[n+3−n+1])/8)  t_n  = ((n(n+1)(n+2))/2)  t_r  = ((r(r+1)(r+2))/2)  (1/t_r ) = (2/(r(r+1)(r+2))) = (1/r)−(2/(r+1))+(1/(r+2))  Σ_(r=1) ^n (1/t_r ) = Σ_(r=1) ^n (1/r)−2Σ_(r=1) ^n (1/(r+1))+Σ_(r=1) ^n (1/(r+2))  Σ_(r=1) ^n (1/t_r ) = Σ_(r=1) ^n (1/r)−2Σ_(r=2) ^(n+1) (1/r)+Σ_(r=3) ^(n+2) (1/r)  Σ_(r=1) ^n (1/t_r ) = Σ_(r=1) ^n (1/r)−2(Σ_(r=1) ^n (1/r)−1+(1/(n+1)))  +(Σ_(r=1) ^n (1/r)−1−(1/2)+(1/(n+1))+(1/(n+2)))  Σ_(r=1) ^n (1/t_r ) = 2−(2/(n+1))−(3/2)+(1/(n+1))+(1/(n+2))  Σ_(r=1) ^n (1/t_r ) = (1/2)−(1/(n+1))+(1/(n+2))  Σ_(r=1) ^n (1/t_r ) = (1/2)−(1/((n+1)(n+2)))  lim_(n→∞) Σ_(r=1) ^n (1/t_r ) = (1/2)

tn=nr=1trn1r=1trtn=n(n+1)(n+2)(n+3)8(n1)n(n+1)(n+2)8tn=n(n+1)(n+2)[n+3n+1]8tn=n(n+1)(n+2)2tr=r(r+1)(r+2)21tr=2r(r+1)(r+2)=1r2r+1+1r+2nr=11tr=nr=11r2nr=11r+1+nr=11r+2nr=11tr=nr=11r2n+1r=21r+n+2r=31rnr=11tr=nr=11r2(nr=11r1+1n+1)+(nr=11r112+1n+1+1n+2)nr=11tr=22n+132+1n+1+1n+2nr=11tr=121n+1+1n+2nr=11tr=121(n+1)(n+2)limnnr=11tr=12

Commented by ajfour last updated on 27/Aug/20

right answer, thanks Sir.

rightanswer,thanksSir.

Answered by Dwaipayan Shikari last updated on 27/Aug/20

△Σ_(r=1) ^n t_r =((n(n+1)(n+2)(n+3))/8)−(((n−1)n(n+1)(n+2))/8)  t_n =((n(n+1)(n+2))/2)  Σ^∞ (1/t_n )=Σ^∞ (2/(n(n+1)(n+2)))=Σ^∞ ((n+2−n)/(n(n+1)(n+2)))=Σ^∞ (1/n)−(1/(n+1))−Σ^∞ (1/(n+1))−(1/(n+2))  =lim_(n→∞) (1−(1/(n+1)))−lim_(n→∞) ((1/2)−(1/(n+2)))  =1−(1/2)=(1/2)

nr=1tr=n(n+1)(n+2)(n+3)8(n1)n(n+1)(n+2)8tn=n(n+1)(n+2)21tn=2n(n+1)(n+2)=n+2nn(n+1)(n+2)=1n1n+11n+11n+2=limn(11n+1)limn(121n+2)=112=12

Commented by ajfour last updated on 27/Aug/20

Great way Sir; thanks a lot.

GreatwaySir;thanksalot.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com