All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 21247 by Tinkutara last updated on 17/Sep/17
If[]representsthegreatestintegerfunctionandf(x)=x−[x]thennumberofrealrootsoftheequationf(x)+f(1x)=1areinfinite.True/False
Answered by dioph last updated on 21/Sep/17
x−[x]+1x−[1x]=1x=1isnotaroot.ifx>1,[1x]=0andhence:x−[x]+1x=1Forsomefixed[x]=kwehave:x2−(k+1)x+1=0x=k+1±k2+2k−32k=1⇒x=1whichwehavealreadyconsidered.k>1⇒2k>3⇒k2<k2+2k−3<(k+1)2⇒k+12<k+1+k2+2k−32<k+1Hencethereisonerealrootxforeveryk=[x]>1Becausewehavenofurtherassumptionsaboutk,thefunctiondoesindeedhaveinfiniterealroots(True)
Commented by dioph last updated on 21/Sep/17
k∈Z+,then:k>1⇒k⩾2⇒2k⩾4>3
Commented by Tinkutara last updated on 22/Sep/17
ThankyouverymuchSir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com