All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 19097 by Tinkutara last updated on 04/Aug/17
Iftan(π4+x)=tan3(π4+α)thenprovethatcosec2x=1+3sin22α3sin2α+sin32α
Answered by 951172235v last updated on 01/Feb/19
cosx+sinxcosx−sinx=(cosα+sinαcosα−sinα)3→(1){(1)+1}{(1)−1}4cosxsinx(cosx−sinx)2=4(cos3α+3cosαsin2α)(sin3α+3cos2αsinα)(cosα−sinα)6sin2x1−sin2x=2cosαsinα(1+2sin2α)(1+2cos2α)(1−2αsin2α)31cosec2x−1=sin2α(3+sin22α)(1−sin2α)3cosec2x=1+(1−sin2α)3(3sin2α+sin32α)cosec2x=3sin2α+sin32α+1−3sin2α+3sin22α−sin32α3sin2α+sin3α=1+3sin22α3sin2α+sin32αans.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com