Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 86160 by jagoll last updated on 27/Mar/20

If (x−1) f(x) + f((1/x)) = (1/(x−1))  find f(x)

If(x1)f(x)+f(1x)=1x1findf(x)

Commented by john santu last updated on 27/Mar/20

replace x by (1/x)  ⇒((1/x)−1)f((1/x))+f(x)= (1/((1/x)−1))  (((1−x)/x))f((1/x)) +f(x) = (x/(1−x)) [ × x ]  (1−x) f((1/x)) + xf(x) = (x^2 /(1−x)) →(ii)  multiply eq (i) by (1−x)  (1−x)f((1/x)) −(1−x)^2 f(x)= −1←(i)  (ii)−(i)  (x+(1−x)^2 ) f(x) =(x^2 /(1−x))+1  (x^2 −x+1)f(x) = ((x^2 −x+1)/(1−x))  f(x) = (1/(1−x))

replacexby1x(1x1)f(1x)+f(x)=11x1(1xx)f(1x)+f(x)=x1x[×x](1x)f(1x)+xf(x)=x21x(ii)multiplyeq(i)by(1x)(1x)f(1x)(1x)2f(x)=1(i)(ii)(i)(x+(1x)2)f(x)=x21x+1(x2x+1)f(x)=x2x+11xf(x)=11x

Commented by jagoll last updated on 27/Mar/20

thank you mr john & tanmay

thankyoumrjohn&tanmay

Commented by mathmax by abdo last updated on 27/Mar/20

(x−1)f(x)+f((1/x))=(1/(x−1)) ⇒((1/x)−1)f((1/x))+f(x) =(1/((1/x)−1)) =(x/(1−x))  we get the system  { (((x−1)f(x)+f((1/x))=(1/(x−1)))),((f(x)+((1−x)/x)f((1/x)) =(x/(1−x)))) :}  Δ_s = determinant (((x−1         1)),((1           ((1−x)/x))))=(((x−1)(1−x))/x)−1 =((x−x^2 −1+x−x)/x)  =((−x^2 +x−1)/x) ⇒f(x) =((Δf(x))/Δ)  =( determinant ((((1/(x−1))             1)),(((x/(1−x))             ((1−x)/x))))/((−x^2 +x−1)/x)) =((−(1/x)−(x/(1−x)))/((−x^2 +x−1)/x)) =((−1+x−x^2 )/(x(1−x)))×(x/(−x^2 +x−1))  =(1/(1−x)) ⇒f(x) =(1/(1−x))

(x1)f(x)+f(1x)=1x1(1x1)f(1x)+f(x)=11x1=x1xwegetthesystem{(x1)f(x)+f(1x)=1x1f(x)+1xxf(1x)=x1xΔs=|x1111xx|=(x1)(1x)x1=xx21+xxx=x2+x1xf(x)=Δf(x)Δ=|1x11x1x1xx|x2+x1x=1xx1xx2+x1x=1+xx2x(1x)×xx2+x1=11xf(x)=11x

Answered by TANMAY PANACEA. last updated on 27/Mar/20

(x−1)f(x)+f((1/x))=(1/(x−1))  replacing x by (1/x)  ((1/x)−1)f((1/x))+f(x)=(1/((1/x)−1))  f(x)=(x/(1−x))−((1−x)/x)f((1/x))  putting the value of f(x)  in given eqn  [(x−1)f(x)+f((1/x))=(1/(1−x))]  so we get  (x−1)[(x/(1−x))−((1−x)/x)f((1/x))]+f((1/x))=(1/(x−1))  −x+(((x−1)^2 )/x)f((1/x))+f((1/x))=(1/(x−1))  f((1/x))[1+((x^2 −2x+1)/x)]=(1/(x−1))+x  f((1/x))[((x+x^2 −2x+1)/x)]=((1+x^2 −x)/(x−1))  f((1/x))=(x/(x−1))=(1/(1−(1/x)))  f(x)=(1/(1−x))

(x1)f(x)+f(1x)=1x1replacingxby1x(1x1)f(1x)+f(x)=11x1f(x)=x1x1xxf(1x)puttingthevalueoff(x)ingiveneqn[(x1)f(x)+f(1x)=11x]soweget(x1)[x1x1xxf(1x)]+f(1x)=1x1x+(x1)2xf(1x)+f(1x)=1x1f(1x)[1+x22x+1x]=1x1+xf(1x)[x+x22x+1x]=1+x2xx1f(1x)=xx1=111xf(x)=11x

Commented by jagoll last updated on 27/Mar/20

thank you mister

thankyoumister

Commented by Serlea last updated on 27/Mar/20

  I think Something is wrong Sir  Line number 4: How did u get ur Second f((1/x))  2) Why didn′t you multiply the both side by (x−1) only the  left hand side of the equation.

IthinkSomethingiswrongSirLinenumber4:HowdidugeturSecondf(1x)2)Whydidntyoumultiplythebothsideby(x1)onlythelefthandsideoftheequation.

Commented by john santu last updated on 27/Mar/20

yes sir.

yessir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com