Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 214186 by hardmath last updated on 30/Nov/24

If   x + (1/x) = 1   find   x^(61)  + (1/x^(61) )+ 4  = ?

Ifx+1x=1findx61+1x61+4=?

Answered by Rasheed.Sindhi last updated on 30/Nov/24

x+(1/x)=1; x^(61) +(1/x^(61) )+4=?  x+(1/x)=1⇒x^2 =x−1  x^3 =x^2 −x=(x−1)−x=−1  (x^3 )^(20) =(−1)^(20) =1⇒x^(60) =1     x^(61) +(1/x^(61) )+4=x^(60) .x+(1/(x^(60) .x))+4                   =x+(1/x)+4=1+4=5

x+1x=1;x61+1x61+4=?x+1x=1x2=x1x3=x2x=(x1)x=1(x3)20=(1)20=1x60=1x61+1x61+4=x60.x+1x60.x+4=x+1x+4=1+4=5

Answered by BaliramKumar last updated on 01/Dec/24

x +  (1/x) = 2cos((π/3))  x^(61)  +  (1/x^(61) ) = 2cos(((61π)/3))               x^n  + (1/x^n ) = 2cos(nθ)            x^(61)  +  (1/x^(61) ) = 2cos(((60π + π)/3))   ⇒ 2cos(20π + (π/3))            x^(61)  +  (1/x^(61) ) = 2cos((π/3))  x^(61)  +  (1/x^(61) ) = 1  x^(61)  +  (1/x^(61) ) + 4 = 1 + 4 = 5

x+1x=2cos(π3)x61+1x61=2cos(61π3)xn+1xn=2cos(nθ)x61+1x61=2cos(60π+π3)2cos(20π+π3)x61+1x61=2cos(π3)x61+1x61=1x61+1x61+4=1+4=5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com