All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 118230 by bobhans last updated on 16/Oct/20
If∫(x)5(x)7+x6dx=pln(xqxq+1)+Cfindthevalueofpandq.
Answered by bemath last updated on 16/Oct/20
I=∫x2xx3x+x6dx=∫xxx+x4dxI=∫dxx+x3x.letx=u→dx=2xduI=∫2uduu2+u7=∫2duu+u6I=∫2duu(1+u5)=∫2(1+u5−u5)u(1+u5)du=2∫(1u−u41+u5)du=2(lnu−15∫d(1+u5)1+u5)=2(lnu−15ln(1+u5))+c=25(5lnu−ln(1+u5))+c=25ln(u51+u5)+c=pln(xq1+xq)+c=25ln(x521+x52)+c=pln(xq1+xq)+cweget{p=25q=52
Commented by bobhans last updated on 16/Oct/20
correct!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com