Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 208959 by hardmath last updated on 28/Jun/24

If   z = − (1/2)  +  ((√3)/2) i  Find   (z^4  + 2z)∙(z^3  + z) = ?

Ifz=12+32iFind(z4+2z)(z3+z)=?

Answered by grigoriy last updated on 29/Jun/24

  f(z) = (z^4  + 2z)(z^3  + z);  z^4  + 2z = f_1 (z); z^3  + z = f_2 (z);  f(z) = f_1 (z)f_2 (z);  z = −(1/2) + ((√3)/2)i = R(cos(ϕ) + isin(ϕ));  R^2  = (−(1/2))^2 + (((√3)/2))^2 = (1/4) + (3/4) = 1; ⇒ R = 1; (R = ∣f(z)∣);  cos(ϕ) = −(1/2); sin(ϕ) = ((√3)/2); ⇒ cos(ϕ) < 0; sin(ϕ) > 0 ⇒ π < ϕ < (π/2);   tg(ϕ) = ((sin(ϕ))/(cos(ϕ))) = −(√3); ⇒ ϕ = arctg(−(√3)) = π − arctg((√3)) = π − (π/3) = ((2π)/3);  π < ϕ < (π/2); ⇒ ϕ = ((2π)/3);  z = cos(((2π)/3)) + isin(((2π)/3));  z^4  = (cos(((2π)/3)) + isin(((2π)/3)))^4  = cos(((8π)/3)) + isin(((8π)/3));  z^4  = cos(((8π)/3)) + isin(((8π)/3));  f_1 (z) = z^4  + 2z;  f_1 (z) = cos(((8π)/3)) + isin(((8π)/3)) + 2cos(((2π)/3)) + 2isin(((2π)/3));  f_1 (z) = (cos(((8π)/3)) + 2cos(((2π)/3))) + i(sin(((8π)/3)) + 2sin(((2π)/3)));  z^4  = (−(1/2) + i((√3)/2))^4 ;  (a + b)^4  = Σ_(n = 0) ^4 C_4 ^n a^(4− n) b^n  = C_4 ^0 a^4  + C_4 ^1 a^3 b + C_4 ^2 a^2 b^2  + C_4 ^3 ab^3  + C_4 ^4 b^4 ;  C_4 ^0  = C_4 ^4  = 1;  C_4 ^1  = C_3 ^1  + C_3 ^0  = C_2 ^1  + C_2 ^0  + 1 = C_1 ^1 + C_1 ^0  + 2 = 4;  C_4 ^2  = C_3 ^2  + C_3 ^1  = C_2 ^2  + C_2 ^1  + C_2 ^1  + C_2 ^0  = 1 + 2C_2 ^1  + 1 = 2 + 2(C_1 ^1  + C_1 ^0 ) = 6;  C_4 ^3  = C_4 ^(4 − 3)  = C_4 ^1  = 4;  (a + b)^4  = a^4  + 4a^3 b + 6a^2 b^2  + 4ab^3  + b^4 ;  z^4  = (−(1/2))^4 + 4∙(−(1/2))^3 ∙((√3)/2)∙i + 6∙(−(1/2))^2 ∙(((√3)/2))^2 ∙i^2 + 4∙(−(1/2))∙(((√3)/2))^3 ∙i^3 + (((√3)/2))^4 ∙i^4 ;  i = (√(−1)) = (−1)^(1/2) ; i^2  = −1; i^3  = i∙i^2  = −i; i^4  = (−1)^2  = 1;  z^4  = (1/(16)) − ((√3)/4)i − (9/8) − ((√3)/4)i + (9/(16)) = −(1/2) − ((√3)/2)i;  z^4  = −(1/2) − ((√3)/2)i;  2z = 2(−(1/2) + ((√3)/2)i) =−1 + (√3)i;  f_1 (z) = −(1/2) − ((√3)/2)i − 1 + (√3)i = −(3/2) + ((√3)/2)i;  f_1 (z) = −(3/2) + ((√3)/2)i;  f_2 (z) = z^3  + z;  z^3  = (−(1/2) + ((√3)/2)i)^3 ;  (a + b)^3  = Σ_(n = 0) ^3 C_3 ^n a^(3 − n) b^n  = C_3 ^0 a^3  + C_3 ^1 a^2 b + C_3 ^2 ab^2  + C_3 ^3 b^3 ;  C_3 ^0  = C_3 ^3  = 1;  C_3 ^1  = C_2 ^1  + C_2 ^0  = C_1 ^1  + C_1 ^0  + 1 = 3;  C_3 ^2  = C_3 ^(3 − 2)  = C_3 ^1  = 3;  (a + b)^3  = a^3  + 3a^2 b + 3ab^2  + b^3 ;  z^3  = (−(1/2))^3 + 3(−(1/2))^2 ((√3)/2)i + 3(−(1/2))(((√3)/2))^2 i^2 + (((√3)/2))^3 i^3 ;  z^3  = −(1/8) + ((3(√3))/8)i + (9/8) − ((3(√3))/8)i = 1;  z^3  = 1;  f_2 (z) = 1 − (1/2) + ((√3)/2)i = (1/2) + ((√3)/2)i;  f(z) = f_1 (z)f_2 (z) = (−(3/2) + ((√3)/2)i)((1/2) + ((√3)/2)i) = −(3/2)((1/2) + ((√3)/2)i) + ((√3)/2)((1/2)i − ((√3)/2));  f(z) = −(3/4) − ((3(√3))/4)i + ((√3)/4)i− ((√3)/4) = −((√3)/2) + (((√3) − 3(√3))/4)i;  Ansver: (z^4  + 2z)(z^3  + z) = −((√3)/2) + (((√3) − 3(√3))/4)i;

f(z)=(z4+2z)(z3+z);z4+2z=f1(z);z3+z=f2(z);f(z)=f1(z)f2(z);z=12+32i=R(cos(φ)+isin(φ));R2=(12)2+(32)2=14+34=1;R=1;(R=f(z));cos(φ)=12;sin(φ)=32;cos(φ)<0;sin(φ)>0π<φ<π2;tg(φ)=sin(φ)cos(φ)=3;φ=arctg(3)=πarctg(3)=ππ3=2π3;π<φ<π2;φ=2π3;z=cos(2π3)+isin(2π3);z4=(cos(2π3)+isin(2π3))4=cos(8π3)+isin(8π3);z4=cos(8π3)+isin(8π3);f1(z)=z4+2z;f1(z)=cos(8π3)+isin(8π3)+2cos(2π3)+2isin(2π3);f1(z)=(cos(8π3)+2cos(2π3))+i(sin(8π3)+2sin(2π3));z4=(12+i32)4;(a+b)4=4n=0C4na4nbn=C40a4+C41a3b+C42a2b2+C43ab3+C44b4;C40=C44=1;C41=C31+C30=C21+C20+1=C11+C10+2=4;C42=C32+C31=C22+C21+C21+C20=1+2C21+1=2+2(C11+C10)=6;C43=C443=C41=4;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;z4=(12)4+4(12)332i+6(12)2(32)2i2+4(12)(32)3i3+(32)4i4;i=1=(1)12;i2=1;i3=ii2=i;i4=(1)2=1;z4=11634i9834i+916=1232i;z4=1232i;2z=2(12+32i)=1+3i;f1(z)=1232i1+3i=32+32i;f1(z)=32+32i;f2(z)=z3+z;z3=(12+32i)3;(a+b)3=3n=0C3na3nbn=C30a3+C31a2b+C32ab2+C33b3;C30=C33=1;C31=C21+C20=C11+C10+1=3;C32=C332=C31=3;(a+b)3=a3+3a2b+3ab2+b3;z3=(12)3+3(12)232i+3(12)(32)2i2+(32)3i3;z3=18+338i+98338i=1;z3=1;f2(z)=112+32i=12+32i;f(z)=f1(z)f2(z)=(32+32i)(12+32i)=32(12+32i)+32(12i32);f(z)=34334i+34i34=32+3334i;Ansver:(z4+2z)(z3+z)=32+3334i;

Answered by grigoriy last updated on 29/Jun/24

  feedback: mail: grigoriybrewer@gmail.com;  telegram(!): @wraith _� machine;

feedback:mail:grigoriybrewer@gmail.com;telegram(!):@wraithmachine;

Answered by mr W last updated on 29/Jun/24

z=−(1/2)+((√3)/2)i=cos ((2π)/3)+i sin ((2π)/3)=e^(((2π)/3)i)   (z^4 +2z)(z^3 +z)  =z^7 +z^5 +2z^4 +2z^2   =e^((14πi)/3) +e^((10πi)/3) +2e^((8πi)/3) +2e^((4πi)/3)   =e^((2πi)/3) +e^(−((2πi)/3)) +2e^((2πi)/3) +2e^(−((2πi)/3))   =3(e^((2πi)/3) +e^(−((2πi)/3)) )  =3(−(1/2)+(((√3)i)/2)−(1/2)−(((√3)i)/2))  =−3 ✓

z=12+32i=cos2π3+isin2π3=e2π3i(z4+2z)(z3+z)=z7+z5+2z4+2z2=e14πi3+e10πi3+2e8πi3+2e4πi3=e2πi3+e2πi3+2e2πi3+2e2πi3=3(e2πi3+e2πi3)=3(12+3i2123i2)=3

Answered by Rasheed.Sindhi last updated on 29/Jun/24

z = − (1/2)  +  ((√3)/2) i=ω (cuberoot of unity)  z^3 =1  ⇒z^3 −1=0  ⇒(z−1)(z^2 +z+1)=0  ⇒z≠1⇒z^2 +z+1=0⇒z^2 +z=−1  ▶(z^4  + 2z)∙(z^3  + z) =  (z + 2z)∙(1 + z) =  3z+3z^2 =3(z+z^2 )=3(−1)=−3 ✓

z=12+32i=ω(cuberootofunity)z3=1z31=0(z1)(z2+z+1)=0z1z2+z+1=0z2+z=1(z4+2z)(z3+z)=(z+2z)(1+z)=3z+3z2=3(z+z2)=3(1)=3

Answered by Rasheed.Sindhi last updated on 29/Jun/24

z = − (1/2)  +  ((√3)/2) i  2z+1=(√3) i  4z^2 +4z+1=−3  z^2 +z+1=0⇒z^2 +z=−1  (z−1)(z^2 +z+1)=0⇒z^3 −1=0  ⇒z^3 =1  ▶ (z^4  + 2z)∙(z^3  + z)       =(z^3 .z+2z)(1+z)       =(1.z+2z)(1+z)       =3z(1+z)=3z.−z^2 =−3z^3 =−3

z=12+32i2z+1=3i4z2+4z+1=3z2+z+1=0z2+z=1(z1)(z2+z+1)=0z31=0z3=1(z4+2z)(z3+z)=(z3.z+2z)(1+z)=(1.z+2z)(1+z)=3z(1+z)=3z.z2=3z3=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com