Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 43363 by rahul 19 last updated on 10/Sep/18

If z= cos θ + isin θ , 0<θ<(π/6) , then prove  that argument of  1−z^4  = 2θ − (π/2) .

Ifz=cosθ+isinθ,0<θ<π6,thenprovethatargumentof1z4=2θπ2.

Commented by maxmathsup by imad last updated on 10/Sep/18

we have z =e^(iθ)  ⇒1−z^4  =1−e^(4iθ)    =1−cos(4θ)−isin(4θ)  =2 sin^2 (2θ) −2isin(2θ)cos(2θ) =−2isin(2θ){cos(2θ) +isin(2θ)}  =2 sin(2θ)(−i) e^(i(2θ))   we have  0<2θ<(π/3) ⇒sin(2θ)>0 ⇒∣1−z^4 ∣ =2 sin(2θ)  and  arg(1−z^4 ) ≡arg(−i) +2θ  [2π] ⇒arg(1−z^4 )≡ −(π/2) +2θ[2π] .

wehavez=eiθ1z4=1e4iθ=1cos(4θ)isin(4θ)=2sin2(2θ)2isin(2θ)cos(2θ)=2isin(2θ){cos(2θ)+isin(2θ)}=2sin(2θ)(i)ei(2θ)wehave0<2θ<π3sin(2θ)>0⇒∣1z4=2sin(2θ)andarg(1z4)arg(i)+2θ[2π]arg(1z4)π2+2θ[2π].

Answered by ajfour last updated on 10/Sep/18

1−z^4 =1−(x+iy)^4     = (1−x^4 −y^4 +6x^2 y^2 )+4i(xy^3 −x^3 y)    tan φ = ((4xy(y^2 −x^2 ))/(1−(x^2 −y^2 )^2 +4x^2 y^2 ))      = ((4m(m^2 −1))/((1+m^2 )^2 −(1−m^2 )^2 +4m^2 ))      (if  m=tan θ )  ⇒   tan φ = ((m^2 −1)/(2m)) = −cot 2θ                  = tan (2θ−(π/2))  ⇒ φ (argument of 1−z^4 )= 2θ−(π/2) .

1z4=1(x+iy)4=(1x4y4+6x2y2)+4i(xy3x3y)tanϕ=4xy(y2x2)1(x2y2)2+4x2y2=4m(m21)(1+m2)2(1m2)2+4m2(ifm=tanθ)tanϕ=m212m=cot2θ=tan(2θπ2)ϕ(argumentof1z4)=2θπ2.

Commented by rahul 19 last updated on 10/Sep/18

thanks sir.

thankssir.

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

z=cosθ+isinθ=e^(iθ)   1−z^4   =1−e^(i4θ)   =1−(cos4θ+isin4θ)  =1−cos4θ−isin4θ  =2sin^2 2θ−i×2sin2θ.cos2θ  so tanα=((−2sin2θcos2θ)/(2sin^2 2θ))=−cot2θ  tan∝=−tan((Π/2)−2θ)  tanα=tan(2θ−(Π/2))  α=2θ−(Π/2)

z=cosθ+isinθ=eiθ1z4=1ei4θ=1(cos4θ+isin4θ)=1cos4θisin4θ=2sin22θi×2sin2θ.cos2θsotanα=2sin2θcos2θ2sin22θ=cot2θtan∝=tan(Π22θ)tanα=tan(2θΠ2)α=2θΠ2

Commented by rahul 19 last updated on 10/Sep/18

thanks sir.

thankssir.

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18

z=cosθ+isinθ=e^(iθ)   1−z^4   =1−e^(i4θ)   =1−(cos4θ+isin4θ)  =1−cos4θ−isin4θ  =2sin^2 2θ−i×2sin2θ.cos2θ  so tanα=((−2sin2θcos2θ)/(2sin^2 2θ))=−cot2θ  tan∝=−tan((Π/2)−2θ)  tanα=tan(2θ−(Π/2))  α=2θ−(Π/2)

z=cosθ+isinθ=eiθ1z4=1ei4θ=1(cos4θ+isin4θ)=1cos4θisin4θ=2sin22θi×2sin2θ.cos2θsotanα=2sin2θcos2θ2sin22θ=cot2θtan∝=tan(Π22θ)tanα=tan(2θΠ2)α=2θΠ2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com