Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 55873 by Easyman32 last updated on 05/Mar/19

Integrate..∫(√(1+(√(1+(√x))))) dx

Integrate..1+1+xdx

Commented by maxmathsup by imad last updated on 05/Mar/19

let I =∫(√(1+(√(1+(√x))))) dx   changement (√(1+(√x)))=t give 1+(√x)=t^2  ⇒  (√x)=t^2 −1 ⇒x =(t^2 −1)^2 =t^4 −2t^2  +1 ⇒  I =∫ (√(1+t))(4t^3 −4t)dt =4 ∫ (t^3 −t)(√(1+t))dt =_((√(1+t))=u)     4∫ {(u^2 −1)^3 −(u^2 −1))u(2u)du  =8 ∫  (u^2 −1){ (u^2 −1)^2 −1}u^2 du  =8 ∫ (u^4 −u^2 )(  u^4 −2u^2 )du =8 ∫   (u^8 −3u^6  +2u^4 }du  =8{(1/9)u^9 −(3/7)u^7  +(2/5)u^5 } +c  =(8/9)u^9  −((24)/7)u^7  +((16)/5)u^5  +c =(8/9)((√(1+t)))^9  −((24)/7)((√(1+t)))^7  +((16)/5)((√(1+t)))^5  +c  =(8/9)((√(1+(√(1+(√x))))))^9  −((24)/7)((√(1+(√(1+(√x))))))^7  +((16)/5)((√(1+(√(1+(√x))))))^5  +c .

letI=1+1+xdxchangement1+x=tgive1+x=t2x=t21x=(t21)2=t42t2+1I=1+t(4t34t)dt=4(t3t)1+tdt=1+t=u4{(u21)3(u21))u(2u)du=8(u21){(u21)21}u2du=8(u4u2)(u42u2)du=8(u83u6+2u4}du=8{19u937u7+25u5}+c=89u9247u7+165u5+c=89(1+t)9247(1+t)7+165(1+t)5+c=89(1+1+x)9247(1+1+x)7+165(1+1+x)5+c.

Answered by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19

  x=t^2    dx=2tdt  ∫(√(1+(√(1+t)))) ×2tdt    k^2 =1+t   2kdk=dt  ∫(√(1+k)) ×2(k^2 −1)×2kdk  4∫(√(1+k)) ×(k^3 −k)dk  a^2 =1+k  2ada=dk  4∫a×{(a^2 −1)^3 −(a^2 −1)}×2ada  8∫a^2 (a^6 −3a^4 +3a^2 −1−a^2 +1)  8∫a^8 −3a^6 +2a^4  da  8×{(a^9 /9)−((3a^7 )/7)+((2a^5 )/5)}+c  wait pls busy ...  8×{(((1+k)^(9/2) )/9)−(3/7)(1+k)^(7/2) +(2/5)(1+k)^(5/2) }+c  k=1+t   t=(√x)  so k=1+(√x)   8×{(((2+(√x) )^(9/2) )/9)−(3/7)(2+(√x) )^(7/2) +(2/5)(2+(√x) )^(5/2) }+c  pls check...

x=t2dx=2tdt1+1+t×2tdtk2=1+t2kdk=dt1+k×2(k21)×2kdk41+k×(k3k)dka2=1+k2ada=dk4a×{(a21)3(a21)}×2ada8a2(a63a4+3a21a2+1)8a83a6+2a4da8×{a993a77+2a55}+cwaitplsbusy...8×{(1+k)92937(1+k)72+25(1+k)52}+ck=1+tt=xsok=1+x8×{(2+x)92937(2+x)72+25(2+x)52}+cplscheck...

Answered by MJS last updated on 05/Mar/19

∫(√(1+(√(1+(√x)))))dx=       [t=1+(√(1+(√x))) → dx=4(√x)(√(1+(√x)))dt; (√x)=t^2 −2t]  =4∫(t−2)(t−1)t^(3/2) dt=  =4∫(t^(7/2) −3t^(5/2) +2t^(3/2) )dt=  =(8/9)t^(9/2) −((24)/7)t^(7/2) +((16)/5)t^(5/2) =  =(8/(315))t^(5/2) (35t^2 −135t+126)  please do the inserting...

1+1+xdx=[t=1+1+xdx=4x1+xdt;x=t22t]=4(t2)(t1)t32dt==4(t723t52+2t32)dt==89t92247t72+165t52==8315t52(35t2135t+126)pleasedotheinserting...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com